Convergence of Dynamics and the Perron-Frobenius Operator

Preprint English OPEN
Gerlach, Moritz;
(2016)
  • Subject: Primary: 37A05, Secondary: 28D05, 37A25, 47A35 | Mathematics - Dynamical Systems | Mathematics - Functional Analysis

We complete the picture how the asymptotic behavior of a dynamical system is reflected by properties of the associated Perron-Frobenius operator. Our main result states that strong convergence of the powers of the Perron-Frobenius operator is equivalent to setwise conve... View more
  • References (8)

    [1] V. I. Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007.

    [2] J. Ding and A. Zhou. Statistical properties of deterministic systems. Tsinghua University Texts. Springer-Verlag, Berlin; Tsinghua University Press, Beijing, 2009.

    [3] Y. Ding. The asymptotic behavior of Frobenius-Perron operator with local lower-bound function. Chaos Solitons Fractals, 18(2):311-319, 2003.

    [4] T. Eisner, B. Farkas, M. Haase, and R. Nagel. Operator Theoretic Aspects of Ergodic Theory, volume 272 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2015.

    [5] M. Gerlach and J. Glu¨ck. Lower Bounds and the Asymptotic Behaviour of Positive Operator Semigroups. preprint, 2016.

    [6] A. Lasota. Statistical stability of deterministic systems. In Equadiff 82 (Wu¨rzburg, 1982), volume 1017 of Lecture Notes in Math., pages 386-419. Springer, Berlin, 1983.

    [7] A. Lasota and J. A. Yorke. Exact dynamical systems and the Frobenius-Perron operator. Trans. Amer. Math. Soc., 273(1):375-384, 1982.

    [8] M. Lin. Mixing for Markov operators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19:231-242, 1971. Moritz Gerlach, Universita¨t Potsdam, Institut fu¨r Mathematik, Karl-LiebknechtStraße 24-25, 14476 Potsdam, Germany E-mail address: moritz.gerlach@uni-potsdam.de

  • Metrics
Share - Bookmark