Chudnovsky-Ramanujan Type Formulae for the Legendre Family

Preprint English OPEN
Chen, Imin; Glebov, Gleb;
(2017)
  • Subject: Mathematics - Number Theory
    arxiv: Computer Science::Symbolic Computation | Mathematics::Classical Analysis and ODEs

We apply the method established in our previous work to derive a Chudnovsky-Ramanujan type formula for the Legendre family of elliptic curves. As a result, we prove two identities for $1/\pi$ in terms of hypergeometric functions.
  • References (9)

    [1] N. Archinard, Exceptional sets of hypergeometric series, J. Number Theory 101 (2003) 244- 269.

    [2] J. Borwein and P. Borwein, Pi and the AGM, Wiley, New York, 1987.

    [3] H. Bruns, Ueber die Perioden der elliptischen Integrale erster und zweiter Gattung, Math. Ann. 27 (1886) 234-252.

    [4] I. Chen and G. Glebov, On Chudnovsky-Ramanujan Type Formulae, Ramanujan J. (to appear)

    [5] D. V. Chudnovsky and G. V. Chudnovsky, Approximation and complex multiplication according to Ramanujan in Ramanujan Revisited, pp. 375-472, G. E. Andrews, R. A. Askey, B. C. Berndt, K. G. Ramanathan, and R. A. Rankin (eds.), Academic Press, Boston, 1988.

    [6] D. V. Chudnovsky and G. V. Chudnovsky, Use of computer algebra for Diophantine and differential equations in Computer Algebra, Lecture Notes in Pure and Appl. Math. 113, pp. 1-81, D. V. Chudnovsky and R. D. Jenks (eds.), Dekker, New York, 1989.

    [7] R. Fricke and F. Klein, Vorlesungen u¨ber die Theorie der elliptischen Modulfunctionen, Teubner, Leipzig, 1890.

    [8] S. Ramanujan, Modular equations and approximations to π, Quart. J. Math. (Oxford) 45 (1914) 350-372.

    [9] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Springer, Dordrecht, 2009. Imin Chen, Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, CANADA E-mail address: ichen@sfu.ca Gleb Glebov, Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, CANADA E-mail address: gglebov@sfu.ca

  • Metrics
    No metrics available
Share - Bookmark