The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables

Preprint English OPEN
Ambrogioni, Luca; Güçlü, Umut; van Gerven, Marcel A. J.; Maris, Eric;
(2017)
  • Subject: Statistics - Machine Learning
    acm: ComputingMethodologies_PATTERNRECOGNITION

This paper introduces the kernel mixture network, a new method for nonparametric estimation of conditional probability densities using neural networks. We model arbitrarily complex conditional densities as linear combinations of a family of kernel functions centered at ... View more
  • References (29)
    29 references, page 1 of 3

    1. S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University Press, 2013.

    2. A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

    3. A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, and K. Koray, “Conditional image generation with PixelCNN decoders,” Advances in Neural Information Processing Systems, 2016.

    4. C. M. Bishop, “Mixture density networks,” Technical Report NCRG/94/004, 1994.

    5. L. Theis and M. Bethge, “Generative image modeling using spatial LSTMs,” Advances in Neural Information Processing Systems, 2015.

    6. T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications,” arXiv preprint arXiv:1701.05517, 2017.

    7. A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural networks,” arXiv preprint arXiv:1601.06759, 2016.

    8. M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,” The Annals of Mathematical Statistics, vol. 27, no. 3, pp. 832-837, 1956.

    9. E. Parzen, “On estimation of a probability density function and mode,” The Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065-1076, 1962.

    10. L. Ambrogioni, U. Güçlü, E. Maris, and M. van Gerven, “Estimating nonlinear dynamics with the ConvNet smoother,” arXiv preprint arXiv:1702.05243, 2017.

  • Related Organizations (1)
    Radboud University
    Netherlands
    Website url: https://www.ru.nl/
    90%
  • Metrics
Share - Bookmark