41 references, page 1 of 5 [1] 4ti2 team, 4ti2-a software package for algebraic, geometric and combinatorial problems on linear spaces, available at www.4ti2.de.

[2] M. Barakat, S. Gutsche, S. Jambor, M. Lange-Hegermann, A. Lorenz and O. Motsak, GradedModules, A homalg based package for the Abelian category of finitely presented graded modules over computable graded rings, Version 2014.09.17 (2014), ((GAP package)), http://homalg.math.rwth-aachen.de.

[3] T. Barron, C. O'Neill, R. Pelayo, On the computation of delta sets and ω-primality in numerical monoids, preprint, 2014

[4] V. Blanco, P. A. García-Sánchez, A. Geroldinger, Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, Illinois J. Math. 55 (2011), 1385-1414.

[5] W. Bruns, B. Ichim, T. Römer, and C. Söger, Normaliz, algorithms for rational cones and affine monoids, http://www.math.uos.de/normaliz, 2014.

[6] L. Bryant, J. Hamblin, The maximal denumerant of a numerical semigroup, Semigroup Forum 86 (2013), 571-582.

[7] M. Bullejos, P. A. García-Sánchez, Minimal presentations for monoids with the ascending chain condition on principal ideals, Semigroup Forum 85 (2012), 185-190.

[8] S. T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Phatel, The catenary and tame degrees on a numerical monoid are eventually periodic, J. Aust. Math. Soc. 97 (2014), 289-300.

[9] S. T. Chapman, P. A. García-Sánchez, D. Llena, The catenary and tame degree of a numerical semigroup, Forum Math. 21 (2009), 117-129.

[10] S. T. Chapman, P. A. García-Sánchez, D. Llena, V. Ponomarenko, J. C. Rosales, The catenary and tame degree in finitely generated commutative cancellative monoids, Manuscripta Math. 120 (2006), 253-264.