Euler Polynomials and Identities for Non-Commutative Operators

Article, Preprint English OPEN
De Angelis , Valerio; Vignat , Christophe;
(2015)
  • Publisher: American Institute of Physics (AIP)
  • Related identifiers: doi: 10.1063/1.4938077
  • Subject: [ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR] | Mathematical Physics

Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the mome... View more
  • References (14)
    14 references, page 1 of 2

    2n − 2k s − l

    2n − 2k s − l

    [2] C. M. Bender and Luis M.A. Bettencourt, Multiple-scale analysis of quantum systems, Phys. Rev. D, 54-12, 7710-7723, 1996

    [3] J.-C. Pain, Commutation relations of operator monomials, J. Phys. A: Math. Theor. 46, 035304, 2013

    [4] N. H. McCoy, On Commutation Formulas in the Algebra of Quantum Mechanic, Transactions of the American Mathematical Society, 3-4, 793-806, Oct. 1929

    [5] H. B. Domingo and E. A. Galapon, Generalized Weyl transform for operator ordering: Polynomial functions in phase space, Journal of Mathematical Physics 56, 022104, 2015

    [6] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover Publications, 1970

    [7] E. Elizalde, Ten physical applications of spectral zeta functions, Springer, 1995

    [8] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (1st ed.). Cambridge University Press, New York, NY, USA, 2010.

    [9] C. Figuieira de Morisson and A. Fring, Time evolution of non-Hermitian Hamiltonian systems, J. Phys. A: Math. Gen. 39 9269, 2006

  • Related Organizations (2)
  • Metrics
Share - Bookmark