Minimal and Maximal Operator Space Structures on Banach Spaces

Preprint English OPEN
P., Vinod Kumar; Balasubramani, M. S.;
(2014)
  • Subject: Mathematics - Operator Algebras | 46L07, 47L25
    arxiv: Mathematics::Functional Analysis

Given a Banach space $X$, there are many operator space structures possible on $X$, which all have $X$ as their first matrix level. Blecher and Paulsen identified two extreme operator space structures on $X$, namely $Min(X)$ and $Max(X)$ which represents respectively, t... View more
  • References (13)
    13 references, page 1 of 2

    of E ≤ n2. By assumption, E is minimal and by using the Hahn-Banach [3] D. Blecher and C. Le Merdy, 'Operator Algebras and their modules, An operator space

    approach', (London Mathematical Society Monographs, Oxford University Press, 2004) [4] D. Blecher and V. Paulsen, 'Tensor products of operator spaces',J. Funct. Anal. 99

    (1991) 262-292. [5] E. Effros and Z.-J. Ruan, Operator Spaces (London Math. Soc. Monographs. New Series,

    Oxford University Press, 2000). [6] M. Junge , Factorization theory for spaces of operators. Habilitationsschrift,Universitat

    Kiel, (1996). [7] U. Haggerup and G. Pisier 'Bounded linear operators between C *-algebras' Duke Math.

    J. 71 ( 1993) 889-925. [8] T. Oikhberg, 'Subspaces of Maximal Operator Spaces', Integr. equ. oper. theory 48

    (2004) 81-102. [9] T. Oikhberg , 'The complete isomorphism class of an operator space', Proc. Amer.

    Math. Soc. 135 (12) (2007) 3943-3948. [10] V. Paulsen, 'Representation of function algebras, Abstract operator spaces and Banach

    space geometry', J. Funct. Anal. 109 (1992) 113-129. [11] V. Paulsen, 'The maximal operator space of a normed space', Proc. Edinburgh. Math.

    Soc. 39 (1996) 309-323. [12] G. Pisier 'Non-commutative vector valued Lp-spaces and completely p-summing maps',

  • Metrics
Share - Bookmark