Time integration of tensor trains

Preprint English OPEN
Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart;
  • Related identifiers: doi: 10.1137/140976546
  • Subject: 15A18, 15A69, 65F99, 65L05 | Mathematics - Numerical Analysis
    acm: ComputingMethodologies_COMPUTERGRAPHICS | MathematicsofComputing_NUMERICALANALYSIS | ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION

A robust and efficient time integrator for dynamical tensor approximation in the tensor train or matrix product state format is presented. The method is based on splitting the projector onto the tangent space of the tensor manifold. The algorithm can be used for updatin... View more
  • References (29)
    29 references, page 1 of 3

    [1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.

    [2] M. H. Beck, A. Jackle, G. A. Worth, and H.-D. Meyer, The multicon guration timedependent Hartree method: A highly e cient algorithm for propagating wavepackets., Phys. Rep., 324 (2000), pp. 1{105.

    [3] D. T. Colbert and W. H. Miller, A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method, J. Chem. Phys., 96 (1992), pp. 1982{1991.

    [4] W. Hackbusch, Tensor spaces and numerical tensor calculus., Berlin: Springer, 2012.

    [5] W. Hackbusch, B. Khoromskij, and E. Tyrtyshnikov, Approximate iterations for structured matrices, Num. Math., 109 (2008), pp. 365{383.

    [6] J. Haegeman, T. J. Osborne, and F. Verstraete, Post-matrix product state methods: To tangent space and beyond, Phys. Rev. B, 88 (2013), p. 075133.

    [7] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Springer-Verlag, Berlin, Germany, second ed., 2006.

    [8] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911{1925.

    [9] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, 19 (2010), pp. 209{286.

    [10] S. Holtz, T. Rohwedder, and R. Schneider, On manifolds of tensors of xed TT-rank, Num. Math., 120 (2012), pp. 701{731.

  • Metrics
Share - Bookmark