29 references, page 1 of 2

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.

[2] M. H. Beck, A. Jackle, G. A. Worth, and H.-D. Meyer, The multicon guration timedependent Hartree method: A highly e cient algorithm for propagating wavepackets., Phys. Rep., 324 (2000), pp. 1{105.

[3] D. T. Colbert and W. H. Miller, A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method, J. Chem. Phys., 96 (1992), pp. 1982{1991. [OpenAIRE]

[4] W. Hackbusch, Tensor spaces and numerical tensor calculus., Berlin: Springer, 2012. [OpenAIRE]

[5] W. Hackbusch, B. Khoromskij, and E. Tyrtyshnikov, Approximate iterations for structured matrices, Num. Math., 109 (2008), pp. 365{383.

[6] J. Haegeman, T. J. Osborne, and F. Verstraete, Post-matrix product state methods: To tangent space and beyond, Phys. Rev. B, 88 (2013), p. 075133. [OpenAIRE]

[7] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Springer-Verlag, Berlin, Germany, second ed., 2006.

[8] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911{1925. [OpenAIRE]

[9] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, 19 (2010), pp. 209{286.

[10] S. Holtz, T. Rohwedder, and R. Schneider, On manifolds of tensors of xed TT-rank, Num. Math., 120 (2012), pp. 701{731.

[11] V. A. Kazeev and B. N. Khoromskij, Low-rank explicit QTT representation of the Laplace operator and its inverse, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 742{758. [OpenAIRE]

[12] B. N. Khoromskij, O(d log n){Quantics approximation of N {d tensors in high-dimensional numerical modeling, Constr. Appr., 34 (2011), pp. 257{280.

[13] O. Koch and C. Lubich, Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 434{454. [OpenAIRE]

[14] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), pp. 455{500. [OpenAIRE]

[15] P. Kramer and M. Saraceno, Geometry of the time-dependent variational principle in quantum mechanics, vol. 140 of Lecture Notes in Physics, Springer-Verlag, Berlin-New York, 1981.

29 references, page 1 of 2