Robust Learning of Fixed-Structure Bayesian Networks

Preprint English OPEN
Cheng, Yu; Diakonikolas, Ilias; Kane, Daniel; Stewart, Alistair;
  • Subject: Mathematics - Statistics Theory | Computer Science - Artificial Intelligence | Computer Science - Machine Learning | Computer Science - Data Structures and Algorithms

We investigate the problem of learning Bayesian networks in a robust model where an $\epsilon$-fraction of the samples are adversarially corrupted. In this work, we study the fully observable discrete case where the structure of the network is given. Even in this basic ... View more
  • References (22)
    22 references, page 1 of 3

    [ADLS15] J. Acharya, I. Diakonikolas, J. Li, and L. Schmidt. Sample-optimal density estimation in nearly-linear time. CoRR, abs/1506.00671, 2015.

    [AHHK12] A. Anandkumar, D. J. Hsu, F. Huang, and S. Kakade. Learning mixtures of tree graphical models. In NIPS, pages 1061-1069, 2012.

    [CDSS14b] S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Near-optimal density estimation in near-linear time using variable-width histograms. In NIPS, pages 1844-1852, 2014.

    [CGR15a] M. Chen, C. Gao, and Z. Ren. A general decision theory for huber's ǫ-contamination model. CoRR, abs/1511.04144, 2015.

    [CGR15b] M. Chen, C. Gao, and Z. Ren. Robust covariance matrix estimation via matrix depth. CoRR, abs/1506.00691, 2015.

    C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theor., 14(3):462-467, 1968.

    Machine Learning, 29(2-3):165-180, 1997.

    C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning k-modal distributions via testing. In SODA, pages 1371-1385, 2012.

    [DKK+16] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Robust estimators in high dimensions without the computational intractability. CoRR, abs/1604.06443, 2016.

    [DKW56] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Mathematical Statistics, 27(3):642-669, 1956.

  • Metrics
Share - Bookmark