On binomial coefficients modulo squares of primes

Preprint English OPEN
Grinberg, Darij;
(2017)
  • Subject: Mathematics - Combinatorics | 11B65, 11A07, 05A10 | Mathematics - Number Theory

We give elementary proofs for the Apagodu-Zeilberger-Stanton-Amdeberhan-Tauraso congruences $$\sum\limits_{n=0}^{p-1}\dbinom{2n}{n} \equiv\eta_{p}\mod p^{2},$$ $$\sum\limits_{n=0}^{rp-1}\dbinom{2n}{n} \equiv\eta_{p}\sum\limits_{n=0}^{r-1}\dbinom {2n}{n}\mod p^{2}$$ and ... View more
  • References (9)

    [AnBeRo05] Peter G. Anderson, Arthur T. Benjamin and Jeremy A. Rouse, Combinatorial Proofs of Fermat's, Lucas's, and Wilson's Theorems, The American Mathematical Monthly, Vol. 112, No. 3 (Mar., 2005), pp. 266-268.

    [ApaZei16] Moa Apagodu, Doron Zeilberger, Using the “Freshman's Dream” to Prove Combinatorial Congruences, The American Mathematical Monthly, Vol. 124, No. 7 (August-September 2017), pp. 597-608. (A preprint can be found at arXiv:1606.03351v2, but is less up-to-date and uses a different numbering of the conjectures.)

    [Bailey91] D. F. Bailey, Some Binomial Coefficient Congruences, Applied Mathematics Letters, Volume 4, Issue 4, 1991, pp. 1-5. https://doi.org/10.1016/0893-9659(91)90043-U

    [BenQui08] Arthur T. Benjamin and Jennifer J. Quinn, An Alternate Approach to Alternating Sums: A Method to DIE for, The College Mathematics Journal, Volume 39, Number 3, May 2008, pp. 191-202(12).

    [GrKnPa94] Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, Second Edition, Addison-Wesley 1994.

    [Grinbe17a] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 18 November 2017. http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf

    [Grinbe17b] Darij Grinberg, The Lucas and Babbage congruences, 6 December 2017. http://www.cip.ifi.lmu.de/~grinberg/lucascong.pdf

    [Hausne83] Melvin Hausner, Applications of a Simple Counting Technique, The American Mathematical Monthly, Vol. 90, No. 2 (Feb., 1983), pp. 127-129.

    [SunTau11] Zhi-Wei Sun, Roberto Tauraso, On some new congruences for binomial coefficients, International Journal of Number Theory, Vol. 7, No. 3 (2011), pp. 645-662. A preprint is arXiv:0709.1665v10.

  • Metrics
Share - Bookmark