Realization of associative products in terms of Moyal and tomographic symbols

Preprint English OPEN
Ibort, A.; Man'ko, V. I.; Marmo, G.; Simoni, A.; Stornaiolo, C.; Ventriglia, F.;
(2013)

The quantizer-dequantizer method allows to construct associative products on any measure space. Here we consider an inverse problem: given an associative product is it possible to realize it within the quantizer-dequantizer framework? The answer is positive in finite di... View more
  • References (16)
    16 references, page 1 of 2

    [1] P. A. M. Dirac, Principles of Quantum Mechanics, 4th ed., Oxford University Press, London, UK (1958).

    [2] E. Schro¨dinger, Der stertige bergang von der Mikro- zur Makromechanik, Naturwissenschaften, 14, 664-666 (1926) [in E. Schro¨dinger, Collected papers on Wave Mechanics, the second edition, Chelsea Publ. Corp., New York, 1978, pp. 41-44].

    [3] J. von Neumann, Wohrscheinlichkeitstheoreticher Aufbau der Quantenmechanik, Go¨ttingen Nachrichten, 11, S. 245- 272 (November 1927). J. von Neumann,Thermodynamik quantenmechanischer gesamtheiten. Go¨ttingenische Nachrichten 11, 245-272 (November 1927) J.von Neumann, Mathematische Grundlagen der Quantummechanik. Springer, Berlin (1932)

    [4] L. Landau, Z. Phys. 45, 430- 441 (1927) [in Collected Papers of L. D. Landau, edited by D. Ter Haar, Gordon 6 Breach, New York, 1965, pp. 8-18].

    [11] A. Ibort, V. I. Man'ko, G. Marmo, A. Simoni, F. Ventriglia, Phys. Scr. 79 (2009) 065013.

    [12] O. V. Man'ko, V. I. Man'ko, and G. Marmo, Phys. Scr. 62 (2000) 446 ; J. Phys. A: Math. Gen. 35 (2002) 699.

    [13] B. V. Fedosov, J. Diff. Geom. 40 (1994) 213.

    [14] M. Kontsevich, Lett. Math. Phys. 66 (2003) 157.

    [15] D. B. Fairlie and C. K. Zachos, Phys. Lett. B 637 (2006) 123.

    [16] H. Gro¨newold, Physica 12 (1946) 405.

  • Metrics
Share - Bookmark