publication . Conference object . Preprint . 2013

Risk Estimation for LCF Crack Initiation

Sebastian Schmitz; Hanno Gottschalk; Georg Rollmann; Rolf Krause;
Open Access
  • Published: 12 Feb 2013
  • Publisher: American Society of Mechanical Engineers
Abstract
Comment: 12 pages, 6 figures
Persistent Identifiers
Subjects
free text keywords: Mathematics - Numerical Analysis, Mathematics - Probability, 60K10, Finite element method, Crack initiation, Siemens, Gas compressor, Structural engineering, business.industry, business, Turbomachinery, Quadrature (mathematics), Fatigue damage, Low-cycle fatigue, Computer science
24 references, page 1 of 2

[1] M. Ba¨ker, H. Harders and J. Ro¨ sler, Mechanisches Verhalten der Werkstoffe, third edition, Vieweg+Teubner, Wiesbaden, 2008.

[2] D. Radaj and M. Vormwald, Ermu¨ dungsfestigkeit, third edition, Springer, Berlin Heidelberg, 2007.

[3] B. Fedelich, A stochastic theory for the problem of multiple surface crack coalescence, International Journal of Fracture, 91, pp. 23-45, 1998.

[4] D. Sornette, T. Magnin and Y. Brechet, The Physical Origin of the Coffin-Manson Law in Low-Cycle Fatigue, Europhys. Lett., 20 (5), pp. 433-438, 1992.

[5] H. Gottschalk and S. Schmitz, Optimal Reliability in Design for Fatigue Life, Part I - Existence of Optimal Shapes, arXiv:1210.4954, 2012.

[6] S. Schmitz, T. Seibel, T. Beck, R. Rollmann, R. Krause and H. Gottschalk, A Probabilistic Model For LCF, in preparation

[7] P. Ciarlet, Mathematical Elasticity - Volume I: ThreeDimensional Elasticity, Studies in Mathematics and its Applications, Vol. 20, North-Holland, Amsterdam, 1988

[8] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, New York, 2004.

[9] M. Knop, R. Jones, L. Molent, L. Wang, On Glinka and Neuber methods for calculating notch tip strains under cyclic load spectra, International Journal of Fatigue, Vol. 22, pp. 743-755, 2000. [OpenAIRE]

[10] M. Sherman, Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional Properties, Wiley Series in Probability and Statistics, 2010.

[11] A. Baddeley, P. Gregori, J. Mateu, R. Stoica and D. Stoyan, editors, Case Studies in Spatial Point Process Modeling, Lecture Notes in Statistics, 185, Springer, 2006.

[12] A. Klenke, Wahrscheinlichkeitstheorie, Springer, Berlin, 2008.

[13] L. A. Escobar and W. Q. Meeker, Statistical Methods for Reliability Data, Wiley-Interscience Publication, New York, 1998.

[14] P. Ciarlet, Basic Error Estimates for Elliptic Problems, Vol. II: Finite Element Methods, ch. 2. Handbook of Numerical Analysis, North-Holland, Amsterdam, 1991. [OpenAIRE]

[15] D. Braess, Finite Elemente - Theorie, schnelle Lo¨ ser und Anwendungen in der Elastizita¨ tstheorie, fourth edition, Springer, Berlin, 2007.

24 references, page 1 of 2
Any information missing or wrong?Report an Issue