22 references, page 1 of 2

[1] R. Subedi et. al., Probing Cold Dense Nuclear Matter, Science 320 (2008), 1476.

[2] G. K. Campbell at. al., Probing Interactions Between Ultracold Fermions, Science 324 (2009), 360.

[3] J. Zaanen, Quantum Critical Electron Systems: The Uncharted Sign Worlds, Science 319 (2008), 1205.

[4] M. Cubrovic, J. Zaanen, and K. Schalm, String Theory, Quantum Phase Transitions, and the Emergent Fermi Liquid, Science 325(2009), 439.

[5] M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett. 94 (2005) 170201.

[6] G. Aarts, Can stochastic quantization evade the sign problem? the relativistic bose gas at finite chemical potential, Phys. Rev. Lett. 102 (2009) 131601.

[7] M. G. Endres, Method for simulating O(N) lattice models at finite density, Phys. Rev. D 75 (2007) 065012.

[8] S. Chandrasekharan, A new computational approach to lattice quantum field theories, PoS LATTICE2008 (2008) 003.

[9] R. T. Scalettar, D. J. Scalapino, and R. L. Sugar, New algorithm for the numerical simulation of fermions, Phys. Rev. B 34 (1986) 7911. [OpenAIRE]

[10] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216.

[11] M. Luscher, Computational Strategies in Lattice QCD, arXiv:1002.4232.

[12] F. Karsch and K. H. Mutter, Strong Coupling QCD at finite baryon number density, Nucl. Phys. B 313 (1989) 541. [OpenAIRE]

[13] S. Chandrasekharan and U.-J. Wiese, Meron-cluster solution of fermion sign problems, Phys. Rev. Lett. 83 (1999) 3116. [OpenAIRE]

[14] M. Salmhofer, Equivalence of the strongly coupled lattice Schwinger model and the eight vertex model, Nucl. Phys. B 362 (1991) 641.

[15] C. Gattringer, V. Hermann, and M. Limmer, Fermion loop simulation of the lattice Gross-Neveu model, Phys. Rev. D 76 (2007) 014503. [OpenAIRE]

22 references, page 1 of 2