publication . Article . Preprint . 2010

Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions

Shailesh Chandrasekharan; Anyi Li;
Open Access
  • Published: 30 Aug 2010 Journal: Journal of High Energy Physics, volume 2,011 (eissn: 1029-8479, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and this leads to a severe sign problem. On the other hand simple bags mostly have a positive weight. Since the complex bags almost cancel each other, we suggest that eliminating ...
Persistent Identifiers
arXiv: High Energy Physics::Lattice
free text keywords: Nuclear and High Energy Physics, High Energy Physics - Lattice, Fermion doubling, Lattice QCD, Meron, Physics, Lattice (order), Partition function (statistical mechanics), Theoretical physics, Boson, Quantum chromodynamics, Fermion, Particle physics
Related Organizations
22 references, page 1 of 2

[1] R. Subedi et. al., Probing Cold Dense Nuclear Matter, Science 320 (2008), 1476.

[2] G. K. Campbell at. al., Probing Interactions Between Ultracold Fermions, Science 324 (2009), 360.

[3] J. Zaanen, Quantum Critical Electron Systems: The Uncharted Sign Worlds, Science 319 (2008), 1205.

[4] M. Cubrovic, J. Zaanen, and K. Schalm, String Theory, Quantum Phase Transitions, and the Emergent Fermi Liquid, Science 325(2009), 439.

[5] M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett. 94 (2005) 170201.

[6] G. Aarts, Can stochastic quantization evade the sign problem? the relativistic bose gas at finite chemical potential, Phys. Rev. Lett. 102 (2009) 131601.

[7] M. G. Endres, Method for simulating O(N) lattice models at finite density, Phys. Rev. D 75 (2007) 065012.

[8] S. Chandrasekharan, A new computational approach to lattice quantum field theories, PoS LATTICE2008 (2008) 003. [OpenAIRE]

[9] R. T. Scalettar, D. J. Scalapino, and R. L. Sugar, New algorithm for the numerical simulation of fermions, Phys. Rev. B 34 (1986) 7911.

[10] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216.

[11] M. Luscher, Computational Strategies in Lattice QCD, arXiv:1002.4232.

[12] F. Karsch and K. H. Mutter, Strong Coupling QCD at finite baryon number density, Nucl. Phys. B 313 (1989) 541. [OpenAIRE]

[13] S. Chandrasekharan and U.-J. Wiese, Meron-cluster solution of fermion sign problems, Phys. Rev. Lett. 83 (1999) 3116. [OpenAIRE]

[14] M. Salmhofer, Equivalence of the strongly coupled lattice Schwinger model and the eight vertex model, Nucl. Phys. B 362 (1991) 641.

[15] C. Gattringer, V. Hermann, and M. Limmer, Fermion loop simulation of the lattice Gross-Neveu model, Phys. Rev. D 76 (2007) 014503. [OpenAIRE]

22 references, page 1 of 2
Any information missing or wrong?Report an Issue