publication . Article . Preprint . 2007

a statistical mechanical problem in schwarzschild spacetime

Collas, Peter; Klein, David;
Open Access
  • Published: 14 Mar 2007 Journal: General Relativity and Gravitation, volume 39, pages 737-755 (issn: 0001-7701, eissn: 1572-9532, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
Abstract
We use Fermi coordinates to calculate the canonical partition function for an ideal gas in a circular geodesic orbit in Schwarzschild spacetime. To test the validity of the results we prove theorems for limiting cases. We recover the Newtonian gas law subject only to tidal forces in the Newtonian limit. Additionally we recover the special relativistic gas law as the radius of the orbit increases to infinity. We also discuss how the method can be extended to the non ideal gas case.
Subjects
arXiv: Astrophysics::Galaxy AstrophysicsAstrophysics::Earth and Planetary Astrophysics
free text keywords: Physics and Astronomy (miscellaneous), Classical mechanics, Quantum mechanics, Physics, Ideal gas, Schwarzschild radius, Fermi coordinates, Newtonian limit, Deriving the Schwarzschild solution, Gas in a box, Ideal gas law, Spherically symmetric spacetime, General Relativity and Quantum Cosmology
20 references, page 1 of 2

[1] Hakim, R.: Remarks on relativistic statistical mechanics. I J. Math. Phys. 8, 1315- 1344 (1967)

[2] Horwitz, L. P., Schieve, W. C., Piron, C.: Gibbs ensembles in relativistic classical and quantum mechanics Ann. Phys., NY 137, 306-340 (1981) [OpenAIRE]

[3] Miller, D. E., Karsch, F.: Covariant structure of relativistic gases in equilibrium Phys. Rev. D 24, 2564-2575 (1981) [OpenAIRE]

[4] Droz-Vincent, P.: Direct interactions in relativistic statistical mechanics Found. Phys. 27, 363-378 ( 1997)

[5] Montesinos, M., Rovelli, C.: Statistical mechanics of generally covariant quantum theories: a Boltzmann-like approach Class. Quantum Grav. 18, 555-569 (2001) [OpenAIRE]

[6] Chernikov, N. A.: Equilibrium distribution of the relativistic gas Acta Phys. Pol. 26, 1069-1092 (1964)

[7] Manasse, F. K., Misner, C. W.: Fermi normal coordinates and some basic concepts in differential geometry J. Math. Phys. 4, 735-745 (1963) [OpenAIRE]

[8] Parker, L., Pimentel, L. O.: Gravitational perturbation of the hydrogen spectrum Phys. Rev. D 25, 3180-3190 (1982) [OpenAIRE]

[9] Pauli, W.: Theory of relativity. Dover, New York (1981) pp. 139-41

[10] Misner, C. W., Thorne, K. S. Wheeler, J. A.: Gravitation. Freeman, San Francisco (1973)

[11] Ehlers, J., Rudolph, E.: Dynamics of extended bodies in general relativity Gen. Rel. Grav. 8, 197-217 (1977) [OpenAIRE]

[12] Parker, L.: One-electron atom as a probe of spacetime curvature Phys. Rev. D 22, 1922-1934 (1980)

[13] Chernikov, N. A.: The relativistic gas in the gravitational field Acta Phys. Pol. 23, 629-645 (1963)

[14] Sachs, R. K., Wu, H.: General relativity for mathematicians. Springer, New York (1977) [OpenAIRE]

[15] Tolman, R. C.: Relativity, thermodynamics, and cosmology. Clarendon, Oxford (1934) [OpenAIRE]

20 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue