Topological entropy of continuous actions of compactly generated groups

Preprint English OPEN
Schneider, Friedrich Martin;
(2015)
  • Subject: Mathematics - General Topology | Mathematics - Group Theory | Mathematics - Dynamical Systems

We introduce a notion of topological entropy for continuous actions of compactly generated topological groups on compact Hausdorff spaces. It is shown that any continuous action of a compactly generated topological group on a compact Hausdorff space with vanishing topol... View more
  • References (19)
    19 references, page 1 of 2

    John Wiley & Sons, Inc., New York, 1989 (cit. on p. 2).

    Nathanial P. Brown and Narutaka Ozawa. C∗-algebras and finite-dimensional approximations. Vol. 88. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008 (cit. on p. 3).

    Andrzej Bi´s and Mariusz Urban´ski. “Some remarks on topological entropy of a semigroup of continuous maps”. In: Cubo 8.2 (2006), pp. 63-71 (cit. on pp. 1, 4).

    Andrzej Bi´s and Pawel G. Walczak. “Entropy of distal groups, pseudogroups, foliations and laminations”. In: Ann. Polon. Math. 100.1 (2011), pp. 45-54 (cit.

    on pp. 1, 4).

    A. Deitmar and S. Echterhoff. Principles of harmonic analysis. Universitext. New York: Springer, 2009, pp. xvi+333 (cit. on pp. 7, 8).

    Tomasz Downarowicz. Entropy in dynamical systems. Vol. 18. New Mathematical Monographs. Cambridge University Press, Cambridge, 2011 (cit. on p. 1).

    E´tienne Ghys, R´emi Langevin and Pawel G. Walczak. “Entropie g´eom´etrique des feuilletages”. In: Acta Math. 160.1-2 (1988), pp. 105-142 (cit. on pp. 1, 4).

    Philip Hall. “On representatives of subsets”. In: Journal of the London Mathematical Society 10 (1935), pp. 26-30 (cit. on p. 5).

    Karl H. Hofmann and Sidney A. Morris. The Lie theory of connected pro-Lie groups. Vol. 2. EMS Tracts in Mathematics. A structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact groups. European Mathematical Society (EMS), Zu¨rich, 2007 (cit. on p. 2).

  • Metrics
Share - Bookmark