18 references, page 1 of 2 [1] L. Andersson, T. B¨ackdahl, and P. Blue. Decay of solutions to the Maxwell equation on the Schwarzschild background. Classical and Quantum Gravity, 33(8):085010, April 2016.

[2] Lars Andersson, Thomas B¨ackdahl, and Pieter Blue. Decay of solutions to the Maxwell equation on the Schwarzschild background. Classical Quantum Gravity, 33(8):085010, 20, 2016.

[3] J. M. Bardeen and W. H. Press. Radiation fields in the Schwarzschild background. J. Math. Phys., 14:7-19, 1973.

[4] Pieter Blue. Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic Differ. Equ., 5(4):807- 856, 2008.

[5] S. Chandrasekhar. On the equations governing the perturbations of the Schwarzschild black hole. Proc. Roy. Soc. London Ser. A, 343:289-298, 1975.

[6] S. Chandrasekhar. On a transformation of Teukolsky's equation and the electromagnetic perturbations of the Kerr black hole. Proc. Roy. Soc. London Ser. A, 348(1652):39-55, 1976.

[7] D. Christodoulou. The Global Initial Value Problem in General Relativity. In V. G. Gurzadyan, R. T. Jantzen, and R. Ruffini, editors, The Ninth Marcel Grossmann Meeting, pages 44-54, December 2002.

[8] Demetrios Christodoulou and Sergiu Klainerman. The global nonlinear stability of the Minkowski space, volume 41 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993.

[9] Mihalis Dafermos and Igor Rodnianski. A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In XVIth International Congress on Mathematical Physics, pages 421-432. World Sci. Publ., Hackensack, NJ, 2010.

[10] Mihalis Dafermos and Igor Rodnianski. Lectures on black holes and linear waves. In Evolution equations, volume 17 of Clay Math. Proc., pages 97-207. Amer. Math. Soc., Providence, RI, 2013.