The spin $\pm$1 Teukolsky equations and the Maxwell system on Schwarzschild

Preprint English OPEN
Pasqualotto, Federico; (2016)
  • Subject: Mathematics - Analysis of PDEs
    arxiv: General Relativity and Quantum Cosmology

In this note we prove decay for the spin $\pm$1 Teukolsky Equations on the Schwarzschild spacetime. These equations are those satisfied by the extreme components ($\alpha$ and $\underline \alpha$) of the Maxwell field, when expressed with respect to a null frame. The su... View more
  • References (18)
    18 references, page 1 of 2

    [1] L. Andersson, T. B¨ackdahl, and P. Blue. Decay of solutions to the Maxwell equation on the Schwarzschild background. Classical and Quantum Gravity, 33(8):085010, April 2016.

    [2] Lars Andersson, Thomas B¨ackdahl, and Pieter Blue. Decay of solutions to the Maxwell equation on the Schwarzschild background. Classical Quantum Gravity, 33(8):085010, 20, 2016.

    [3] J. M. Bardeen and W. H. Press. Radiation fields in the Schwarzschild background. J. Math. Phys., 14:7-19, 1973.

    [4] Pieter Blue. Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic Differ. Equ., 5(4):807- 856, 2008.

    [5] S. Chandrasekhar. On the equations governing the perturbations of the Schwarzschild black hole. Proc. Roy. Soc. London Ser. A, 343:289-298, 1975.

    [6] S. Chandrasekhar. On a transformation of Teukolsky's equation and the electromagnetic perturbations of the Kerr black hole. Proc. Roy. Soc. London Ser. A, 348(1652):39-55, 1976.

    [7] D. Christodoulou. The Global Initial Value Problem in General Relativity. In V. G. Gurzadyan, R. T. Jantzen, and R. Ruffini, editors, The Ninth Marcel Grossmann Meeting, pages 44-54, December 2002.

    [8] Demetrios Christodoulou and Sergiu Klainerman. The global nonlinear stability of the Minkowski space, volume 41 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993.

    [9] Mihalis Dafermos and Igor Rodnianski. A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In XVIth International Congress on Mathematical Physics, pages 421-432. World Sci. Publ., Hackensack, NJ, 2010.

    [10] Mihalis Dafermos and Igor Rodnianski. Lectures on black holes and linear waves. In Evolution equations, volume 17 of Clay Math. Proc., pages 97-207. Amer. Math. Soc., Providence, RI, 2013.

  • Similar Research Results (4)
  • Metrics
    No metrics available
Share - Bookmark