Designing a High Performance Parallel Personal Cluster

Preprint English OPEN
Kapanova, K. G. ; Sellier, J. M. (2016)
  • Subject: Computer Science - Distributed, Parallel, and Cluster Computing | Computer Science - Performance

Today, many scientific and engineering areas require high performance computing to perform computationally intensive experiments. For example, many advances in transport phenomena, thermodynamics, material properties, computational chemistry and physics are possible onl... View more
  • References (18)
    18 references, page 1 of 2

    [1] P. Prabhu, T.B. Jablin, A. Raman, Y. Zhang, J. Huang, A survey of the practice of computational science, In State of the practice reports, p. 19. ACM, (2011).

    [2] D.J. Becker, T. Sterling, D. Savarese, J.E. Dorband, U.A. Ranawak, C.V. Packer, BEOWULF: A parallel workstation for scientific computation, In Proceedings, International Conference on Parallel Processing, vol. 95. (1995).

    [3] L.A. Barroso, The price of performance, Queue 3, no. 7, pp. 48-53, (2005).

    [4] A. Greenberg, J. Hamilton, D.A. Maltz, P. Patel, The cost of a cloud: research problems in data center networks, ACM SIGCOMM computer communication review 39, no.1, pp. 68-73, (2008).

    [5] V.W. Freeh, F. Pan, N. Kappiah, D.K. Lowenthal, R. Springer, Exploring the energy-time tradeoff in MPI programs on a power-scalable cluster, In Parallel and Distributed Processing Symposium, Proceedings. 19th IEEE International, pp. 4a-4a. IEEE, (2005).

    [6] P.de Langen, B. Juurlink, Leakage-aware multiprocessor scheduling, Journal of Signal Processing Systems 57, no. 1, pp. 73-88, (2009).

    [8] J.M. Sellier, GNU Archimedes, accessed 10 November 2015, URL: www.gnu.org/software/archimedes

    [9] J.M. Sellier, nano-archimedes, accessed 10 November 2015, URLs: www.gnu.org/software/nano-archimedes, www.nano-archimedes.com

    [10] Big Board List, accessed http://www.bigboardlist.com/ 10

    [13] S.J. Cox, J.T. Cox, R.P. Boardman, S.J. Johnston, M. Scott, N.S. Obrien, Iridis-pi: a low-cost, compact demonstration cluster, Cluster Computing, 17(2), pp. 349-358, (2014).

  • Metrics
    No metrics available
Share - Bookmark