Share  Bookmark

 Download from


[1] D. Aharonov (1998): Quantum computation  a review. In: Annual Review of Computational Physics, World Scientific, volume VI, ed. Dietrich Stauffer, see also http://arXiv.org/abs/quantph/9812037.
[3] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf (1998): Quantum lower bounds by polynomials. Proceedings of 39th IEEE FOCS, 352361, see also http://arXiv.org/abs/quantph/9802049.
[4] M. Boyer, P. Brassard, P. Høyer, and A. Tapp (1998): Tight bounds on quantum searching. Fortschritte der Physik 46, 493  505, see also http://arXiv.org/abs/quantph/9605034.
[5] G. Brassard, P. Høyer, M. Mosca, and A. Tapp (2000): Quantum amplitude amplification and estimation. Technical report, http://arXiv.org/abs/quantph/0005055.
[6] G. Brassard, P. Høyer, and A. Tapp (1998): Quantum counting. Lect. Notes in Comp. Science 1443, 820  831, see also http://arXiv.org/abs/quantph/9805082.
[7] D. Deutsch (1985): Quantum theory, the ChurchTuring principle and the universal quantum computer. Proc. R. Soc. Lond., Ser. A 400, 97117.
[8] A. Ekert, P. Hayden, and H. Inamori (2000): Basic concepts in quantum computation. See http://arXiv.org/abs/quantph/0011013.
[9] R. Feynman (1982): Simulating physics with computers. Int. J. Theor. Phys. 21, 467488.
[10] L. Grover (1996): A fast quantum mechanical algorithm for database search. Proc. 28 Annual ACM Symp. on the Theory of Computing, 212219, ACM Press New York. See also http://arXiv.org/abs/quantph/9605043.
[11] L. Grover (1998): A framework for fast quantum mechanical algorithms. Proc. 30 Annual ACM Symp. on the Theory of Computing, 5362, ACM Press New York. See also http://arXiv.org/abs/quantph/9711043.