publication . Preprint . 2016

Performance of Solution Processed Carbon Nanotube Field Effect Transistors with Graphene Electrodes

Gangavarapu, P R Yasasvi; Lokesh, Punith Chikkahalli; Bhat, K N; Naik, A K;
Open Access English
  • Published: 16 Nov 2016
Abstract
This work evaluates the performance of carbon nanotube field effect transistors (CNTFET) using few layer graphene as the contact electrode material. We present the experimental results obtained on the barrier height at CNT graphene junction using temperature dependent IV measurements. The estimated barrier height in our devices for both holes and electrons is close to zero or slightly negative indicating the Ohmic contact of graphene with the valence and conduction bands of CNTs. In addition, we also report that there is no correlation between the barrier height and thickness of graphene.
Subjects
free text keywords: Condensed Matter - Mesoscale and Nanoscale Physics
Download from
28 references, page 1 of 2

1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56-58 (1991).

2. Novoselov, K. S., Geim, A. K., Morozov, S. V. , Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669 (2004).

3. Patil, N., Lin, A., Zhang, J., Wong, H.-S. P. & Mitra, S. Digital VLSI logic technology using Carbon Nanotube FETs: Frequently Asked Questions. in 46th ACM/IEEE Design Automation Conference, 2009. DAC '09 304-309 (2009).

4. Wei, H., Zhang, J., Wei, L., Patil, N., Lin, A., Shulaker, M. M., Chen, H.-Y., Wong, H.-S. P., Mitra, S. Carbon nanotube imperfection-immune digital VLSI: Frequently asked questions updated. in 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) 227-230 (2011). doi:10.1109/ICCAD.2011.6105330

5. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654-657 (2003). [OpenAIRE]

6. Dürkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary Mobility in Semiconducting Carbon Nanotubes. Nano Lett. 4, 35-39 (2004). [OpenAIRE]

7. Cao, Q., Han, S.-J., Tulevski, G. S., Zhu, Y., Lu, D. D., Haensch, W., Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 8, 180-186 (2013).

8. Zhang, J., Lin, A., Patil, N., Wei, H., Wei, L., Wong, H.-S. P., Mitra, S. Carbon Nanotube Robust Digital VLSI. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31, 453-471 (2012).

9. Shulaker, M. M., Hills, G., Patil, N., Wei, H., Chen, H.-Y., Wong, H.-S. P., Mitra, S. Carbon nanotube computer. Nature 501, 526-530 (2013).

10. Vitale, V., Curioni, A. & Andreoni, W. Metal−Carbon Nanotube Contacts: The Link between Schottky Barrier and Chemical Bonding. J. Am. Chem. Soc. 130, 5848-5849 (2008). [OpenAIRE]

11. Svensson, J. & Campbell, E. E. B. Schottky barriers in carbon nanotube-metal contacts. J. Appl. Phys. 110, 111101 (2011).

12. Zhang, Z. Y., Wang, S., Ding, L., Liang, X. L., Xu, H. L., Shen, J., Chen, Q., Cui, R. L., Li, Y., Peng, L.- M. High-performance n-type carbon nanotube field-effect transistors with estimated sub-10-ps gate delay. Appl. Phys. Lett. 92, 133117 (2008).

13. Ding, L., Wang, S., Zhang, Z., Zeng, Q., Wang, Z., Pei, T., Yang, L., Liang, X., Shen, J., Chen, Q. et al. Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors: Scaling and Comparison with Sc-Contacted Devices. Nano Lett. 9, 4209-4214 (2009).

14. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574-578 (2010).

15. Robert, P. T. & Danneau, R. Charge distribution of metallic single walled carbon nanotubegraphene junctions. New J. Phys. 16, 13019 (2014).

28 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue