From elongated spanning trees to vicious random walks

Article, Preprint English OPEN
Gorsky, A.; Nechaev, S.; Poghosyan, V. S.; Priezzhev, V. B.;
(2012)
  • Publisher: Elsevier
  • Identifiers: doi: 10.1016/j.nuclphysb.2013.01.003
  • Subject: [PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] | [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] | Mathematical Physics | [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] | Condensed Matter - Statistical Mechanics | High Energy Physics - Theory | [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]

27 pages, 6 figures; International audience; Given a spanning forest on a large square lattice, we consider by combinatorial methods a correlation function of $k$ paths ($k$ is odd) along branches of trees or, equivalently, $k$ loop--erased random walks. Starting and en... View more
  • References (29)
    29 references, page 1 of 3

    [1] G. Kirchhoff, Ann. Phys. Chem. 72, 497 (1847).

    [2] H.Saleur and B. Duplantier, Phys. Rev. Lett. 58, 2325 (1987).

    [3] V.B. Priezzhev, J. Stat. Phys. 74,955 (1994).

    [4] P.Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

    [5] D.Dhar, Phys. Rev. Lett. 64, 1613 (1990).

    [6] M.E.Fisher, J. Stat. Phys. 34, 667 (1984).

    [7] D.A.Huse and M.E. Fisher, Phys. Rev. B 29, 239 (1984).

    [8] G.F. Lawler, O. Shram, and W. Werner, Ann. Probab. 32, 939 (2004)

    [9] J. G. Propp and D.B. Wilson, J. of Algorithms, 27, 170 (1998).

    [10] E.V. Ivashkevich and Chin-Kun Hu, Phys. Rev. E 71, 015104 (R) (2005).

  • Related Organizations (1)
  • Metrics
Share - Bookmark