publication . Preprint . 2015

Jacob's ladders, Riemann's oscillators, quotient of two oscillating multiforms and set of metamorphoses of this system

Moser, Jan;
Open Access English
  • Published: 01 Jun 2015
Abstract
In this paper we introduce complicated oscillating system, namely quotient of two multiforms based on Riemann-Siegel formula. We prove that there is an infinite set of metamorphoses of this system (=chrysalis) on critical line $\sigma=\frac 12$ into a butterfly (=infinite series of M\" obius functions in the region of absolute convergence $\sigma>1$).
Subjects
free text keywords: Mathematics - Classical Analysis and ODEs
Download from

Z(t) = 2 X Å T ã ln T Å T ã ln T

[1] G.H. Hardy, 'A course of pure mathematics', Cambridge University Press, 1908.

[2] J. Moser, 'Jacob's ladders and almost exact asymptotic representation of the HardyLittlewood integral', Math. Notes 88, (2010), 414-422, arXiv: 0901.3937.

[3] J. Moser, 'Jacob's ladders, structure of the Hardy-Littlewood integral and some new class of nonlinear integral equations', Proc. Steklov Inst. 276 (2011), 208-221, arXiv: 1103.0359.

[4] J. Moser, 'Jacob's ladders and the three-points interaction of the Riemann zeta-function with intself', arXiv: 1107.5200.

[5] J. Moser, 'Jacob's ladders, reverse iterations and new infinite set of L2-orthogonal systems generated by the Riemann ζ 21 + it -function', arXiv: 1402.2098.

[6] J. Moser, 'Jacob's ladders, ζ-factorization and infinite set of metamorphosis of a multiform', arXiv: 1501.07705.

[7] C.L. Siegel, 'U¨ ber Riemann's Nachlass zur analytischen Zahlentheorie: Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik', Abt. B. Studien, 2 (1932), 45-80.

[8] E.C. Titchmarsh, 'The theory of the Riemann zeta-function', Clarendon Press, Oxford, 1951. Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynska Dolina M105, 842 48 Bratislava, SLOVAKIA E-mail address: jan.mozer@fmph.uniba.sk

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue