Initial-boundary value problems for multi-term time-fractional diffusion equations with x-dependent coefficients

Preprint English OPEN
Li, Zhiyuan; Huang, Xinchi; Yamamoto, Masahiro;
(2018)
  • Subject: Mathematics - Analysis of PDEs

In this paper, we discuss an initial-boundary value problem (IBVP) for the multi-term time-fractional diffusion equation with x-dependent coefficients. By means of the Mittag-Leffler functions and the eigenfunction expansion, we reduce the IBVP to an equivalent integral... View more
  • References (27)
    27 references, page 1 of 3

    [9] Cheng J, Nakagawa J, Yamamoto M and Yamazaki T. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse problems, 2009, 25(11): 115002.

    [10] Daftardar-Gejji V, Bhalekar S. Boundary value problems for multi-term fractional differential equations. Journal of Mathematical Analysis and Applications, 2008, 345(2): 754-765.

    [11] Giona M, Cerbelli S, Roman H E. Fractional diffusion equation and relaxation in complex viscoelastic materials. Physica A: Statistical Mechanics and its Applications, 1992, 191(1- 4): 449-453.

    [12] Gorenflo R, Luchko Y, Yamamoto M. Time-fractional diffusion equation in the fractional Sobolev spaces. Fractional Calculus and Applied Analysis, 2015, 18(3): 799-820.

    [13] Gorenflo R, Luchko Y, Zabrejko P P. On solvability of linear fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal, 1999, 2(3): 163-177.

    [14] Gorenflo R, Mainardi F. Fractional calculus: Integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, (1997) 223-276.

    [15] Hatano Y, Hatano N. Dispersive transport of ions in column experiments: An explanation of long-tailed profiles. Water Resources Research, 1998, 34(5): 1027-1033.

    [16] Hatano Y, Nakagawa J, Wang S and Yamamoto M. Determination of order in fractional diffusion equation. Journal of Math-for-Industry (JMI), 2013, 5(A): 51-57.

    [17] Henry D. Geometric theory of semilinear parabolic equations. Springer, 2006.

    [18] Jiang D, Li Z, Liu Y and Yamamoto M. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations. Inverse Problems, 2017.

  • Related Organizations (1)
  • Metrics
Share - Bookmark