Inhomogeneous linear equation in Rota-Baxter algebra

Preprint English OPEN
Pietrzkowski, Gabriel;
(2014)
  • Subject: Mathematics - Rings and Algebras | 13P99, 16W99, 16Z05
    arxiv: Mathematics::Commutative Algebra | Mathematics::Quantum Algebra | Mathematics::Combinatorics | Nonlinear Sciences::Exactly Solvable and Integrable Systems

We consider a complete filtered Rota-Baxter algebra of weight $\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. A... View more
  • References (11)
    11 references, page 1 of 2

    eλu − 1 eP (u)P e−P (u)a0 (27) P − X = (1 − t) Y [6] Ebrahimi-Fard, K., Guo, L., and Kreimer, D. Integrable renormalization II: the general case. In Annales Henri Poincare (2005), vol. 6, Springer, pp. 369-395.

    [7] Ebrahimi-Fard, K., Guo, L., and Manchon, D. Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion. Communications in mathematical physics 267, 3 (2006), 821-845.

    [8] Ebrahimi-Fard, K., and Manchon, D. A Magnus-and Fer-type formula in dendriform algebras. Foundations of Computational Mathematics 9, 3 (2009), 295-316.

    [9] Guo, L. An Introduction to Rota-Baxter Algebra, vol. 2. International Press, 2012.

    [10] Kingman, J. Spitzer's identity and its use in probability theory. Journal of the London Mathematical Society 1, 1 (1962), 309-316.

    [11] Magnus, W. On the exponential solution of differential equations for a linear operator. Communications on pure and applied mathematics 7, 4 (1954), 649-673.

    [12] Rota, G.-C. Baxter operators, an introduction, Kung JPS, Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, 1995.

    [13] Rota, G.-C. Baxter algebras and combinatorial identities. I. Bulletin of the American Mathematical Society 75, 2 (1969), 325-329.

    [14] Rota, G.-C. Baxter algebras and combinatorial identities. II. Bulletin of the American Mathematical Society 75, 2 (1969), 330-334.

    [15] Rota, G.-C., and Smith, D. Fluctuation theory and Baxter algebras. In Symposia Mathematica (1972), vol. 9, pp. 179- 201.

  • Metrics
    No metrics available
Share - Bookmark