A revisited Johnson-Mehl-Avrami-Kolmogorov model and the evolution of grain-size distributions in steel

Article, Preprint English OPEN
Hömberg, D. ; Patacchini, F. S. ; Sakamoto, K. ; Zimmer, J. (2016)

The classical Johnson–Mehl–Avrami–Kolmogorov approach for nucleation and growth models of diffusive phase transitions is revisited and applied to model the growth of ferrite in multiphase steels. For the prediction of mechanical properties of such steels, a deeper knowledge of the grain structure is essential. To this end, a Fokker–Planck evolution law for the volume distribution of ferrite grains is developed and shown to exhibit a log-normally distributed solution. Numerical parameter studies are given and confirm expected properties qualitatively. As a preparation for future work on parameter identification, a strategy is presented for the comparison of volume distributions with area distributions experimentally gained from polished micrograph sections.
  • References (23)
    23 references, page 1 of 3

    [1] M. Avrami. Kinetics of phase change. I General theory. J. Chem. Phys., 7(12):1103{1112, 1939.

    [2] M. Avrami. Kinetics of phase change. II Transformationtime relations for random distribution of nuclei. J. Chem. Phys., 8(12):212{224, 1940.

    [3] M. Avrami. Kinetics of phase change. III Granulation, phase change, and microstructure. J. Chem. Phys., 9(2):177{184, 1941.

    [4] J. M. Ball, J. Carr, and O. Penrose. The Becker-Doring cluster equations: basic properties and asymptotic behaviour of solutions. Comm. Math. Phys., 104(4):657{692, 1986.

    [5] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta'asan. Critical events, entropy, and the grain boundary character distribution. Phys. Rev. B, 83:134117, Apr 2011.

    [6] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta'asan. Predictive theory for the grain boundary character distribution. Mater. Sci. Forum, 715-716:279{285, 2012.

    [7] S. Berbenni, V. Favier, and M. Berveiller. Impact of the grain size distribution on the yield stress of heterogeneous materials. Int. J. Plasticity, 23(1):114 { 142, 2007.

    [8] W. Bleck, D. Homberg, U. Prahl, P. Suwanpinij, and N. Togobytska. Optimal control of a cooling line for production of hot rolled dual phase steel. Steel Res. Int., 85(9):1328{1333, 2014.

    [9] E. A. Carlen and W. Gangbo. Constrained steepest descent in the 2-Wasserstein metric. Ann. of Math. (2), 157(3):807{846, 2003.

    [10] S. Cordier, L. Pareschi, and C. Piatecki. Mesoscopic modelling of nancial markets. J. Stat. Phys., 134(1):161{ 184, 2009.

  • Metrics
    No metrics available
Share - Bookmark