publication . Preprint . Article . Other literature type . 2017

A revisited Johnson-Mehl-Avrami-Kolmogorov model and the evolution of grain-size distributions in steel

Zimmer, Johannes; Patacchini, Francesco; Hömberg, Dietmar; Sakamoto, Kenichi;
Open Access English
  • Published: 18 May 2017
  • Country: United Kingdom
Abstract
Comment: 16 pages, 19 figures
Subjects
free text keywords: Condensed Matter - Materials Science, 0102 Applied Mathematics, Applied Mathematics, grain size distribution, Fokker-Planck equation, nucleation and growth, phase transitions, 35Q84, 35Q74, 35K10, 74H40, Mathematics, Phase transition, Micrograph, Thermodynamics, Ferrite (magnet), Statistical physics, Grain size, Grain structure, Nucleation
23 references, page 1 of 2

[1] M. Avrami. Kinetics of phase change. I General theory. J. Chem. Phys., 7(12):1103{1112, 1939. [OpenAIRE]

[2] M. Avrami. Kinetics of phase change. II Transformationtime relations for random distribution of nuclei. J. Chem. Phys., 8(12):212{224, 1940. [OpenAIRE]

[3] M. Avrami. Kinetics of phase change. III Granulation, phase change, and microstructure. J. Chem. Phys., 9(2):177{184, 1941. [OpenAIRE]

[4] J. M. Ball, J. Carr, and O. Penrose. The Becker-Doring cluster equations: basic properties and asymptotic behaviour of solutions. Comm. Math. Phys., 104(4):657{692, 1986. [OpenAIRE]

[5] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta'asan. Critical events, entropy, and the grain boundary character distribution. Phys. Rev. B, 83:134117, Apr 2011. [OpenAIRE]

[6] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta'asan. Predictive theory for the grain boundary character distribution. Mater. Sci. Forum, 715-716:279{285, 2012. [OpenAIRE]

[7] S. Berbenni, V. Favier, and M. Berveiller. Impact of the grain size distribution on the yield stress of heterogeneous materials. Int. J. Plasticity, 23(1):114 { 142, 2007.

[8] W. Bleck, D. Homberg, U. Prahl, P. Suwanpinij, and N. Togobytska. Optimal control of a cooling line for production of hot rolled dual phase steel. Steel Res. Int., 85(9):1328{1333, 2014. [OpenAIRE]

[9] E. A. Carlen and W. Gangbo. Constrained steepest descent in the 2-Wasserstein metric. Ann. of Math. (2), 157(3):807{846, 2003. [OpenAIRE]

[10] S. Cordier, L. Pareschi, and C. Piatecki. Mesoscopic modelling of nancial markets. J. Stat. Phys., 134(1):161{ 184, 2009.

[11] W. Dreyer, R. Huth, A. Mielke, J. Rehberg, and M. Winkler. Global existence for a nonlocal and nonlinear Fokker-Planck equation. Z. Angew. Math. Phys., 66(2):293{315, 2015.

[12] M. Fanfoni and M. Tomellini. The Johnson-Mehl-Avrami-Kohnogorov model: A brief review. Il Nuovo Cimento D, 20(7):1171{1182, 1998.

[13] D. Homberg, S. Lu, K. Sakamoto, and M. Yamamoto. Parameter identi cation in non-isothermal nucleation and growth processes. Inverse Problems, 30(3):035003, 24, 2014.

[14] D. Homberg, N. Togobytska, and M. Yamamoto. On the evaluation of dilatometer experiments. Appl. Analysis, 88:669{681, 2009.

[15] A. Huber. Zur Kinetik von Kristallisationsvorgangen. Zeitschrift fur Physik, 93(3):227{231, 1935.

23 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . Other literature type . 2017

A revisited Johnson-Mehl-Avrami-Kolmogorov model and the evolution of grain-size distributions in steel

Zimmer, Johannes; Patacchini, Francesco; Hömberg, Dietmar; Sakamoto, Kenichi;