Share  Bookmark

 Download from


[1] S. Abramsky, A. Brandenburger. The sheaftheoretic structure of nonlocality and contextuality. New Journal of Physics 13, 113036 (2011).
[2] S. Abramsky, S. Mansfield, R. Soares Barbosa. The Cohomology of NonLocality and Contextuality. Preprint, arXiv:1111.3620.
[3] G. Bezhanishvili et al. Bitopological duality for distributive lattices and Heyting algebras. Mathematical Structures in Computer Science 20, Issue 03, 359393 (2010).
[4] G. Birkhoff, J. von Neumann. The logic of quantum mechanics. Ann. Math. 37, 823 843 (1936).
[5] M. Caspers, C. Heunen, N.P. Landsman, B. Spitters. Intuitionistic quantum logic of an nlevel system. Found. Phys. 39, 731759 (2009).
[6] M.L. Dalla Chiara, R. Giuntini. Quantum logics. In Handbook of Philosophical Logic, vol. VI, eds. G. Gabbay and F. Guenthner, Kluwer, Dordrecht, 129228 (2002).
[7] A. D¨oring. KochenSpecker theorem for von Neumann algebras. Int. Jour. Theor. Phys. 44, 139160 (2005).
[8] A. D¨oring, C.J. Isham. A topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys. 49, Issue 5, 053515 (2008).
[9] A. D¨oring, C.J. Isham. A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 49, Issue 5, 053516 (2008).
[10] A. D¨oring, C.J. Isham. A topos foundation for theories of physics: III. Quantum theory and the representation of physical quantities with arrows δ˘(Aˆ) : Σ → R↔. J. Math. Phys. 49, Issue 5, 053517 (2008).