Topos-Based Logic for Quantum Systems and Bi-Heyting Algebras

Preprint English OPEN
Doering, Andreas (2012)
  • Subject: Quantum Physics | 81P10, 03G12 (Primary) 06D20, 06C99 (Secondary)
    arxiv: Computer Science::Logic in Computer Science

Comment: 22 pages, no figures; v2: improved presentation, minor correction, all main results unchanged, added example. Accepted for publication in Logic & Algebra in Quantum Computing, Lecture Notes in Logic, published by the Association for Symbolic Logic in conjunction with Cambridge University Press
  • References (38)
    38 references, page 1 of 4

    [1] S. Abramsky, A. Brandenburger. The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics 13, 113036 (2011).

    [2] S. Abramsky, S. Mansfield, R. Soares Barbosa. The Cohomology of Non-Locality and Contextuality. Preprint, arXiv:1111.3620.

    [3] G. Bezhanishvili et al. Bitopological duality for distributive lattices and Heyting algebras. Mathematical Structures in Computer Science 20, Issue 03, 359-393 (2010).

    [4] G. Birkhoff, J. von Neumann. The logic of quantum mechanics. Ann. Math. 37, 823- 843 (1936).

    [5] M. Caspers, C. Heunen, N.P. Landsman, B. Spitters. Intuitionistic quantum logic of an n-level system. Found. Phys. 39, 731-759 (2009).

    [6] M.L. Dalla Chiara, R. Giuntini. Quantum logics. In Handbook of Philosophical Logic, vol. VI, eds. G. Gabbay and F. Guenthner, Kluwer, Dordrecht, 129-228 (2002).

    [7] A. D¨oring. Kochen-Specker theorem for von Neumann algebras. Int. Jour. Theor. Phys. 44, 139-160 (2005).

    [8] A. D¨oring, C.J. Isham. A topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys. 49, Issue 5, 053515 (2008).

    [9] A. D¨oring, C.J. Isham. A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 49, Issue 5, 053516 (2008).

    [10] A. D¨oring, C.J. Isham. A topos foundation for theories of physics: III. Quantum theory and the representation of physical quantities with arrows δ˘(Aˆ) : Σ → R↔. J. Math. Phys. 49, Issue 5, 053517 (2008).

  • Metrics
    No metrics available
Share - Bookmark