## Central $L$-values of elliptic curves and local polynomials

*Ehlen, Stephan*;

*Guerzhoy, Pavel*;

*Kane, Ben*;

*Rolen, Larry*;

- Subject: 11F37, 11F11, 11E76, 11M20 | Mathematics - Number Theoryarxiv: Mathematics::Number Theory

- References (32)
[1] C. Alfes, CM values and Fourier coefficients of harmonic Maass forms, Ph.D. thesis, Technischen Universit¨at Darmstadt, 2015.

[2] C. Alfes, S. Ehlen, Twisted Traces of CM values of weak Maass forms, J. Number Theory 133 (2013), 1827-1845.

[3] M. Abromowitz and I. Stegun, Handbook of mathematical functions, Dover Publications, New York, 1972, 1-1043.

[4] B. Birch and H. Swinnerton-Dyer, Notes on elliptic curves, II, J. Reine Angew. Math. 218, (1965), 79-108.

[5] R. E. Borcherds,Automorphic forms with singularities on Grassmannians, Invent. Math., 132(3) (1998), 491- 562.

[6] K. Bringmann, B. Kane, and W. Kohnen, Locally harmonic Maass forms and the kernel of the Shintani lift, Int. Math. Res. Not. 2015 (2015), 3185-3224.

[7] K. Bringmann, B. Kane, and M. Viazovska, Theta lifts and local Maass forms, Math. Res. Lett. 20 (2013), 213-234.

[8] K. Bringmann, B. Kane, and S. Zwegers, A generating function of locally harmonic Maass forms, Compositio Math. 150 (2014), 749-762.

[9] K. Bringmann and K. Ono, The f (q) mock theta function conjecture and partition ranks, Inventiones Mathematicae 165 (2006), 243-266.

[10] J. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. Journal 125 (2004), 45-90.

- Similar Research Results (6)
- Metrics No metrics available

- Download from

- Cite this publication