publication . Article . Preprint . 2018

Central $L$-values of elliptic curves and local polynomials

Ehlen, Stephan; Guerzhoy, Pavel; Kane, Ben; Rolen, Larry;
Open Access
  • Published: 28 Mar 2018 Journal: Proceedings of the London Mathematical Society, volume 120, pages 742-769 (issn: 0024-6115, eissn: 1460-244X, Copyright policy)
  • Publisher: Wiley
Abstract
Comment: 29 pages, 4 tables and 1 diagram
Subjects
arXiv: Mathematics::Number Theory
free text keywords: General Mathematics, Polynomial, Elliptic curve, Mathematics, Pure mathematics, Mathematics - Number Theory, 11F37, 11F11, 11E76, 11M20
Related Organizations
32 references, page 1 of 3

[1] C. Alfes, CM values and Fourier coefficients of harmonic Maass forms, Ph.D. thesis, Technischen Universit¨at Darmstadt, 2015. [OpenAIRE]

[2] C. Alfes, S. Ehlen, Twisted Traces of CM values of weak Maass forms, J. Number Theory 133 (2013), 1827-1845.

[3] M. Abromowitz and I. Stegun, Handbook of mathematical functions, Dover Publications, New York, 1972, 1-1043.

[4] B. Birch and H. Swinnerton-Dyer, Notes on elliptic curves, II, J. Reine Angew. Math. 218, (1965), 79-108.

[5] R. E. Borcherds,Automorphic forms with singularities on Grassmannians, Invent. Math., 132(3) (1998), 491- 562.

[6] K. Bringmann, B. Kane, and W. Kohnen, Locally harmonic Maass forms and the kernel of the Shintani lift, Int. Math. Res. Not. 2015 (2015), 3185-3224.

[7] K. Bringmann, B. Kane, and M. Viazovska, Theta lifts and local Maass forms, Math. Res. Lett. 20 (2013), 213-234.

[8] K. Bringmann, B. Kane, and S. Zwegers, A generating function of locally harmonic Maass forms, Compositio Math. 150 (2014), 749-762. [OpenAIRE]

[9] K. Bringmann and K. Ono, The f (q) mock theta function conjecture and partition ranks, Inventiones Mathematicae 165 (2006), 243-266.

[10] J. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. Journal 125 (2004), 45-90. [OpenAIRE]

[11] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251.

[12] L. Dickson, History of the Theory of Numbers. Volume II, Chapter XVI, Dover Publications.

[13] B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of L-series, II, Math. Ann. 497 (1987), 497-562. [OpenAIRE]

[14] M. H¨ovel, Automorphe Formen mit Singularita¨ten auf dem hyperbolichen Raum, Ph.D. thesis, 2011.

[15] N. Koblitz, Introduction to elliptic curves and modular forms, Springer, Berlin, 1993. [OpenAIRE]

32 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2018

Central $L$-values of elliptic curves and local polynomials

Ehlen, Stephan; Guerzhoy, Pavel; Kane, Ben; Rolen, Larry;