publication . Article . Preprint . 2017

The contribution of pseudoscalar and axial-vector mesons to hyperfine structure of muonic hydrogen

Dorokhov, A. E.; Kochelev, N. I.; Martynenko, A. P.; Martynenko, F. A.; Radzhabov, A. E.; Faustov, R. N.;
Open Access
  • Published: 12 Oct 2017 Journal: Journal of Physics: Conference Series, volume 938, page 12,042 (issn: 1742-6588, eissn: 1742-6596, Copyright policy)
  • Publisher: IOP Publishing
In the framework of the quasipotential method in quantum electrodynamics we calculate the contribution of light pseudoscalar (PS) and axial-vector (AV) mesons to the interaction operator of a muon and a proton in muonic hydrogen atom. The coupling of mesons with the muon is via two-photon intermediate state. The parametrization of the transition form factor of two photons into PS and AV mesons, based on the experimental data on the transition form factors and QCD asymptotics, is used. Numerical estimates of the contributions to the hyperfine structure of the spectrum of the S and P levels are presented. It is shown that such contribution to the hyperfine splitti...
arXiv: Physics::Atomic PhysicsNuclear TheoryHigh Energy Physics::Experiment
free text keywords: General Physics and Astronomy, Exotic atom, Form factor (quantum field theory), Proton, Pseudoscalar, Particle physics, Nuclear physics, Meson, Physics, Hyperfine structure, Quantum chromodynamics, Muon, High Energy Physics - Phenomenology

The work is supported by Russian Science Foundation (grant No. RSF 15-12-10009) (A.E.D.),

No. 2013T2J0011) (N.I.K.) and President's international fellowship initiative (Grant No.

2017VMA0045) (A.E.R.), Russian Foundation for Basic Research (grant No. 16-02-00554)

(A.P.M., F.A.M.). [1] R. Pohl, A. Antognini, F. Nez et al., Nature 466, 213 (2010). [2] A. Antognini et al., Science 339, 417 (2013). [3] A. Antognini et al., Ann. Phys. (NY) 331, 127 (2013). [4] A. E. Dorokhov, A. E. Radzhabov, A. S. Zhevlakov, Eur. Phys. J. C 72, 2227 (2012). [5] A. E. Dorokhov, A. E. Radzhabov, A. S. Zhevlakov, JETP Lett. 100, 133 (2014). [6] P. J. Mohr, D. B. Newell, and B. N. Taylor (CODATA Recommended Values of the Fundamental Physical

Constants: 2014) Rev. Mod. Phys. 88, 035009 (2016). [7] R. Pohl, F. Nez, L. M. P. Fernandes et al., Science 353, 669 (2016). [8] Y. Ma et al., Int. J. Mod. Phys. Conf. Ser. 40, 1660046 (2016). [9] A. Adamczak et al. [FAMU Collaboration], JINST 11, no. 05, P05007 (2016). [10] R. Pohl [CREMA Collaboration], J. Phys. Soc. Jap. 85, 091003 (2016). [11] A. E. Dorokhov, N. I. Kochelev, A. P. Martynenko, F. A. Martynenko, and R. N. Faustov, Phys. Part. Nucl.

Lett. 14, 857 (2017) ; arXiv:1704.07702 [hep-ph]. [12] A. E. Dorokhov, N. I. Kochelev, A. P. Martynenko, F. A. Martynenko, and A. E. Radzhabov, [OpenAIRE]

arXiv:1707.04138 [hep-ph]. [13] H. Q. Zhou, H. R. Pang, Phys. Rev. A 92, 032512 (2015). [14] F. Hagelstein, V. Pascalutsa, PoS CD15 077 (2016). [15] N. T. Huong, E. Kou, B. Moussallam, Phys. Rev. D 93, 114005 (2016). [16] A. P. Martynenko and R. N. Faustov, J. Exp. Theor. Phys. 98, 39 (2004). [17] A. P. Martynenko and R.N. Faustov, J. Exp. Theor. Phys. 88, 672 (1999). [18] A. A. Krutov, A. P. Martynenko, F. A. Martynenko and O. S. Sukhorukova, Phys. Rev. A 94, 062505 (2016). [19] M. I. Eides, H. Grotch, and V. A. Shelyuto, Theory of Light Hydrogenic Bound States, Springer Tracts in

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue