publication . Article . Preprint . 2013

minimal quasivarieties of semilattices over commutative groups

Nagy, Ildikó V.;
Open Access
  • Published: 26 Sep 2013 Journal: Algebra universalis, volume 70, pages 309-325 (issn: 0002-5240, eissn: 1420-8911, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
We continue some recent investigations of W. Dziobiak, J. Jezek, and M. Maroti. Let G=(G,\cdot) be a commutative group. A semilattice over G is a semilattice enriched with G as a set of unary operations acting as semilattice automorphisms. We prove that the minimal quasivarieties of semilattices over a finite abelian group G are in one-to-one correspondence with the subgroups of G. If G is not finite, then we reduce the description of minimal quasivarieties to that of those minimal quasivarieties in which not every algebra has a zero element.
arXiv: Mathematics::LogicMathematics::General MathematicsMathematics::Rings and AlgebrasMathematics::General Topology
free text keywords: Algebra and Number Theory, Automorphism, Algebra, Commutative property, Mathematics, Discrete mathematics, Semilattice, Abelian group, Zero element, Unary operation, Mathematics - Rings and Algebras, 06A12

[1] Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol 78. Springer-Verlag, New York-Berlin (1981). The Millennium Edition, [OpenAIRE]

[2] Dziobiak, W., Jeˇzek, J., Mar´oti, M.: Minimal varieties and quasivarieties of semilattices with one automorphism. Semigroup Forum 78, 253-261 (2009)

[3] Jeˇzek, J: Simple semilattices with two commuting automorphisms. Algebra Universalis 15, 162-175 (1982)

[4] Jeˇzek, J: Subdirectly irreducible semilattices with an automorphism. Semigroup Forum 43, 178-186 (1991)

[5] Mar´oti, M.: Semilattices with a group of automorphisms. Algebra Universalis 38, 238-265 (1997)

[6] Scott, W.R.: Group Theory. Dover Publ. Inc., New York, 1987

[7] Szendrei, A´ .: Clones in Universal Algebra. S´eminaire de Math´ematiques Sup´erieures, vol. 99., Les Presses de l'Universit´e de Montr´eal, Montr´eal, 1986. [Available from: Centre de Recherches Math´ematiques, Universit´e de Montr´eal]

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue