# New solutions of the star–triangle relation with discrete and continuous spin variables

- Published: 30 Oct 2015
- Publisher: IOP Publishing

[1] Baxter, R. J. Exactly Solved Models in Statistical Mechanics. Academic, London, 1982.

[2] Au-Yang, H., McCoy, B. M., Perk, J. H. H., Tang, S., and Yan, M.-L. Commuting transfer matrices in the chiral Potts models: Solutions of star-triangle equations with genus > 1. Phys. Lett. A123 (1987) 219-223.

[3] Baxter, R. J., Perk, J. H. H., and Au-Yang, H. New solutions of the star triangle relations for the chiral Potts model. Phys. Lett. A128 (1988) 138-142.

[4] Zamolodchikov, A. B. “Fishing-net” diagrams as a completely integrable system. Phys. Lett. B 97 (1980) 63-66. [OpenAIRE]

[5] Fateev, V. A. and Zamolodchikov, A. B. Self-dual solutions of the star-triangle relations in ZN -models. Phys. Lett. A 92 (1982) 37-39.

[6] Kashiwara, M. and Miwa, T. A class of elliptic solutions to the star-triangle relation. Nucl. Phys. B275 (1986) 121-134.

[7] Volkov, A. Y. and Faddeev, L. D. Yang-Baxterization of the quantum dilogarithm. Zapiski Nauchnykh Seminarov POMI 224 (1995) 146-154. English translation: J. Math. Sci. 88 (1998) 202-207.

[8] Bazhanov, V. V., Mangazeev, V. V., and Sergeev, S. M. Faddeev-Volkov solution of the YangBaxter Equation and Discrete Conformal Symmetry. Nucl. Phys. B784 (2007) 234-258. [OpenAIRE]

[9] Bazhanov, V. V., Mangazeev, V. V., and Sergeev, S. M. Exact solution of the Faddeev-Volkov model. Phys. Lett. A 372 (2008) 1547-1550.

[10] Bazhanov, V. V. and Sergeev, S. M. A Master solution of the quantum Yang-Baxter equation and classical discrete integrable equations. Adv. Theor. Math. Phys. 16 (2012) 65-95. [OpenAIRE]

[11] Bazhanov, V. V., Kels, A. P., and Sergeev, S. M. Quasi-classical expansion of the star-triangle relation and integrable systems on quad graphs. In preparation (2015).

[12] Baxter, R. J. A rapidity-independent parameter in the star-triangle relation. In MathPhys Odyssey, 2001, volume 23 of Prog. Math. Phys., pages 49-63. Birkh¨auser Boston, Boston, MA, 2002.

[13] Spiridonov, V. P. On the elliptic beta function. Uspekhi Mat. Nauk 56 (2001) 181-182. [OpenAIRE]

[14] Spiridonov, V. P. Essays on the theory of elliptic hypergeometric functions. Russ. Math. Surv. 63 (2008) 405. [OpenAIRE]

[15] Bazhanov, V. V. and Sergeev, S. M. Elliptic gamma-function and multi-spin solutions of the Yang-Baxter equation. Nucl. Phys. B856 (2012) 475-496.