$\delta$-Expansion at Finite Temperature

Preprint English OPEN
Ramos, Rudnei O. (1996)
  • Subject: High Energy Physics - Phenomenology

We apply the $\delta$-expansion perturbation scheme to the $\lambda \phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\delta$-expansion the interaction term is written as $\lambda (\phi^{2})^{ 1 + \delta}$ and $\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\delta$. The results are compared with the usual loop-expansion at finite temperature.
  • References (12)
    12 references, page 1 of 2

    [1] J. I. Kapusta, Finite-temperature field theory (Cambridge, U.P. , Cambridge, 1989).

    [2] L. Dolan and R. Jackiw, Phys. Rev. D9 (1974) 3320.

    [3] C. M. Bender, K. A. Milton, M. Moshe, S. S. Pinsky and L. M. Simmons, Jr., Phys. Rev. Lett. 58 (1987) 2615; Phys. Rev. D37 (1988) 1472; S. S. Pinsky and L. M. Simmons, Jr., Phys. Rev. D38 (1988) 2518; C. M. Bender and H. F. Jones, Phys. Rev. D38 (1988) 2526;

    [4] I. Yotsuyanagi, Phys. Rev. D39 (1989) 485.

    [5] P. M. Stevenson, Phys. Rev. D23 (1981) 2916;

    [6] H. W. Braden, Phys. Rev. D25 (1982) 1028.

    [7] C. M. Bender and A. Rebhan, Phys. Rev. D41 (1990) 3269.

    [8] M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions” (Dover Publ., Inc., NY 1972).

    [9] J. R. Espinosa, M. Quir´os and F. Zwirner, Phys. Lett. B291 (1992) 115;

    [10] S. K. Gandhi and A. J. Mckane, Nucl. Phys. B419 (1994) 424;

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark