publication . Article . Preprint . 1997

statistical mechanics and black hole thermodynamics

Carlip, Steven;
Open Access
  • Published: 07 Feb 1997 Journal: Nuclear Physics B - Proceedings Supplements, volume 57, pages 8-12 (issn: 0920-5632, Copyright policy)
  • Publisher: Elsevier BV
Black holes are thermodynamic objects, but despite recent progress, the ultimate statistical mechanical origin of black hole temperature and entropy remains mysterious. Here I summarize an approach in which the entropy is viewed as arising from ``would-be pure gauge'' degrees of freedom that become dynamical at the horizon. For the (2+1)-dimensional black hole, these degrees of freedom can be counted, and yield the correct Bekenstein-Hawking entropy; the corresponding problem in 3+1 dimensions remains open.
arXiv: Astrophysics::High Energy Astrophysical Phenomena
free text keywords: Nuclear and High Energy Physics, Atomic and Molecular Physics, and Optics, Black hole complementarity, Black hole thermodynamics, Quantum mechanics, Nonsingular black hole models, Black brane, Extremal black hole, White hole, Physics, Black hole, Classical mechanics, Membrane paradigm, General Relativity and Quantum Cosmology
Related Organizations
23 references, page 1 of 2

1. J. D. Bekenstein, Phys. Rev. D7 (1973) 2333.

2. S. W. Hawking, Nature 248 (1974) 30.

3. See, for example, A. Strominger and C. Vafa, Phys. Lett. B379 (1996) 99; G. Horowitz and A. Strominger, Phys. Rev. Lett. 77 (1996) 2368; C. Callan and J. Maldacena, Nucl. Phys. B475 (1996) 645.

4. A. P. Balachandran, L. Chandar, and A. Momen, Nucl. Phys. B461 (1996) 581; “Edge States in Canonical Gravity,” Syracuse preprint SU-4240-610 (1995), gr-qc/9506006. [OpenAIRE]

5. S. Carlip, Phys. Rev. D51 (1995) 632.

6. S. Carlip, to appear in Phys. Rev. D55 (1997).

7. M. Ban˜ados and A. Gomberoff, “Some Remarks on Carlip's Derivation of the 2+1 Black Hole Entropy,” gr-qc/9611044.

8. M. Ban˜ados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849; M. Ban˜ados, M. Henneaux, C. Teitelboim, and J. Zanelli, Phys. Rev. D48 (1993) 1506.

9. T. Regge and C. Teitelboim, Ann. Phys. 88 (1974) 286.

10. J. E. Nelson and T. Regge, Nucl. Phys. B328 (1989) 190; Commun. Math. Phys. 141 (1991) 211.

11. J. E. Nelson, T. Regge, and F. Zertuche, Nucl. Phys. B339 (1990) 516.

12. M. Berger and D. Ebin, J. Diff. Geom. 3 (1969) 379.

13. J. W. York, Ann. Inst. Henri Poincar´e A21 (1974) 319.

14. S. Carlip, M. Clements, S. DellaPietra, and V. DellaPietra, Commun. Math. Phys. 127 (1990) 253.

15. E. Witten, Commun. Math. Phys. 144 (1992) 189.

23 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue