publication . Preprint . 2005

Fermi-Dirac statistics and the number theory

Kubasiak, A.; Korbicz, J.; Zakrzewski, J.; Lewenstein, M.;
Open Access English
  • Published: 20 Jul 2005
Abstract
We relate the Fermi-Dirac statistics of an ideal Fermi gas in a harmonic trap to partitions of given integers into distinct parts, studied in number theory. Using methods of quantum statistical physics we derive analytic expressions for cumulants of the probability distribution of the number of different partitions.
Subjects
arxiv: Condensed Matter::Quantum Gases
free text keywords: Condensed Matter - Statistical Mechanics, Quantum Physics
Download from

[1] K. Huang, Statistical mechanics, (Wiley and Sons), 1963.

[2] S. Grossmann and M. Holthaus, Phys. Rev. E, 54 (3495-3498) , (1996).

[3] M. Wilkens and C. Weiss, J. Mod. Opt., 44 (1801-1814) , (1997).

[4] M. Gajda and K. Rza¸z˙ewski, Phys. Rev. Lett., 78 (2686-2689) , (1997); S. Grossman and M. Holthaus, Phys. Rev. Lett., 79 (3557-3560) , (1997); M. Holthaus M, E. Kalinowski E, and K. Kirsten, Ann. Phys. , 270 (198-230) , (1998); M. N. Tran, M. V. N. Murthy, and R. K. Bhaduri, Ann. Phys., 311 (204-219) , (2004).

[5] P. Navez, D. Bitouk, M. Gajda, Z. Idziaszek, and K. Rza¸z˙ewski, Phys. Rev. Lett., 79 (1789-1792) , (1997).

[6] S. Giorgini S, L.P. Pitaevskii, and S. Stringari, Phys. Rev. Lett., 80 (5040-5043) , (1998); Z. Idziaszek, M. Gajda, P. Navez, M. Wilkens, and K. Rza¸z˙ewski, Phys. Rev. Lett., 82 (4376-4379) , (1999); Z. Idziaszek, Phys. Rev. A, 71 (053604) , (2005); [OpenAIRE]

[7] G.E. Andrews, The Theory of Partitions (Encyclopedia of Mathematics and its Applications), Vol. 2, (Addison-Wesley), 1976.

[8] G. H. Hardy, S. Ramanujan (Editor), Proc. Lond. Math. Soc., 17 (75) , (1918).

[9] M. Holthaus, K.T. Kapale, V.V. Kocharovsky, and MO Scully, Physica A, 300 (433- 467) , (2001); C. Weiss and M. Holthaus, Europhys. Lett., 59 (486-492) , (2002); C. Weiss, M. Block, M. Holthaus, and G. Schmieder, J. Phys. A, 36 (1827) , (2003).

[10] M.N. Tran, J. Phys. A, 36 (961) , (2003).

[11] H. Rademacher, Topics in Analytic Number Theory, (Springer, Berlin), 1973.

[12] M. Abramowitz and I. Stegun (ed.), Handbook of mathematical function, (Dover Publications, New York), 1972.

[13] A. Erd´elyi (ed.), Tables of integral transforms, (McGraw-Hill, New York), 1954.

[14] M. Lewenstein M, J.I. Cirac, and L. Santos, J. Phys. A, 33 (4107-4129) , (2000).

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue