SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression

Article, Preprint English OPEN
Flores S.;

This paper deals with the problem of finding the globally optimal subset of h elements from a larger set of n elements in d space dimensions so as to minimize a quadratic criterion, with an special emphasis on applications to computing the Least Trimmed Squares Estimato... View more
  • References (24)
    24 references, page 1 of 3

    Adams, W. P., Forrester, R. J., Glover, F. W., 2004. Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs. Discrete optimization 1 (2), 99-120.

    Adams, W. P., Sherali, H. D., 1990. Linearization strategies for a class of zero-one mixed integer programming problems. Operations Research 38 (2), 217-226.

    Adams, W. P., Sherali, H. D., 1993. Mixed-integer bilinear programming problems. Mathematical Programming 59 (3), 279-305.

    Agulló, J., 2001. New algorithms for computing the least trimmed squares regression estimator. Computational Statistics & Data Analysis 36 (4), 425-439.

    Bernholt, T., 2005. Computing the least median of squares estimator in time O(nd). In: Gervasi, O., Gavrilova, M. L., Kumar, V., Lagana, A., Lee, H. P., Mun, Y., Taniar, D., Tan, C. (Eds.), Computational Science and Its Applications - ICCSA 2005. Vol. 3480 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 697-706.

    Bertsimas, D., Mazumder, R., 12 2014. Least quantile regression via modern optimization. Ann. Statist. 42 (6), 2494-2525.

    Chen, X., AUG 2003. An improved branch and bound algorithm for feature selection. Pattern Recognition Letters 24 (12), 1925-1933.

    Donoho, D., Huber, P. J., 1983. The notion of breakdown point. In: A Festschrift for Erich L. Lehmann. Wadsworth Statist./Probab. Ser. Wadsworth, pp. 157-184.

    Erickson, J., Har-Peled, S., Mount, D. M., 2006. On the least median square problem. Discrete Comput. Geom. 36 (4), 593-607.

    Giloni, A., Padberg, M., 2002. Least trimmed squares regression, least median squares regression, and mathematical programming. Mathematical and Computer Modelling 35 (9-10), 1043 -1060.

  • Metrics