SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression

Related identifiers: doi: 10.1016/j.ejor.2015.04.024 
Subject: Mathematics  Optimization and Control  Mathematics  Statistics Theory

References
(24)
Adams, W. P., Forrester, R. J., Glover, F. W., 2004. Comparisons and enhancement strategies for linearizing mixed 01 quadratic programs. Discrete optimization 1 (2), 99120.
Adams, W. P., Sherali, H. D., 1990. Linearization strategies for a class of zeroone mixed integer programming problems. Operations Research 38 (2), 217226.
Adams, W. P., Sherali, H. D., 1993. Mixedinteger bilinear programming problems. Mathematical Programming 59 (3), 279305.
Agulló, J., 2001. New algorithms for computing the least trimmed squares regression estimator. Computational Statistics & Data Analysis 36 (4), 425439.
Bernholt, T., 2005. Computing the least median of squares estimator in time O(nd). In: Gervasi, O., Gavrilova, M. L., Kumar, V., Lagana, A., Lee, H. P., Mun, Y., Taniar, D., Tan, C. (Eds.), Computational Science and Its Applications  ICCSA 2005. Vol. 3480 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 697706.
Bertsimas, D., Mazumder, R., 12 2014. Least quantile regression via modern optimization. Ann. Statist. 42 (6), 24942525.
Chen, X., AUG 2003. An improved branch and bound algorithm for feature selection. Pattern Recognition Letters 24 (12), 19251933.
Donoho, D., Huber, P. J., 1983. The notion of breakdown point. In: A Festschrift for Erich L. Lehmann. Wadsworth Statist./Probab. Ser. Wadsworth, pp. 157184.
Erickson, J., HarPeled, S., Mount, D. M., 2006. On the least median square problem. Discrete Comput. Geom. 36 (4), 593607.
Giloni, A., Padberg, M., 2002. Least trimmed squares regression, least median squares regression, and mathematical programming. Mathematical and Computer Modelling 35 (910), 1043 1060.

Metrics
No metrics available

 Download from


Cite this publication