publication . Article . Preprint . 2015

socp relaxation bounds for the optimal subset selection problem applied to robust linear regression

Flores, Salvador;
Open Access
  • Published: 29 May 2015 Journal: European Journal of Operational Research, volume 246, pages 44-50 (issn: 0377-2217, Copyright policy)
  • Publisher: Elsevier BV
  • Country: Chile
Comment: 12 pages, 3 figures, 2 tables
free text keywords: Robust regression, Mathematics, Computation, Branch and bound, Linearization, Integer programming, Optimization problem, Mathematical optimization, Global optimization, Nonlinear system, Mathematics - Optimization and Control, Mathematics - Statistics Theory
24 references, page 1 of 2

Adams, W. P., Forrester, R. J., Glover, F. W., 2004. Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs. Discrete optimization 1 (2), 99-120.

Adams, W. P., Sherali, H. D., 1990. Linearization strategies for a class of zero-one mixed integer programming problems. Operations Research 38 (2), 217-226. [OpenAIRE]

Adams, W. P., Sherali, H. D., 1993. Mixed-integer bilinear programming problems. Mathematical Programming 59 (3), 279-305.

Agulló, J., 2001. New algorithms for computing the least trimmed squares regression estimator. Computational Statistics & Data Analysis 36 (4), 425-439.

Bernholt, T., 2005. Computing the least median of squares estimator in time O(nd). In: Gervasi, O., Gavrilova, M. L., Kumar, V., Lagana, A., Lee, H. P., Mun, Y., Taniar, D., Tan, C. (Eds.), Computational Science and Its Applications - ICCSA 2005. Vol. 3480 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 697-706.

Bertsimas, D., Mazumder, R., 12 2014. Least quantile regression via modern optimization. Ann. Statist. 42 (6), 2494-2525.

Chen, X., AUG 2003. An improved branch and bound algorithm for feature selection. Pattern Recognition Letters 24 (12), 1925-1933.

Donoho, D., Huber, P. J., 1983. The notion of breakdown point. In: A Festschrift for Erich L. Lehmann. Wadsworth Statist./Probab. Ser. Wadsworth, pp. 157-184.

Erickson, J., Har-Peled, S., Mount, D. M., 2006. On the least median square problem. Discrete Comput. Geom. 36 (4), 593-607.

Giloni, A., Padberg, M., 2002. Least trimmed squares regression, least median squares regression, and mathematical programming. Mathematical and Computer Modelling 35 (9-10), 1043 -1060. [OpenAIRE]

Giloni, A., Padberg, M., 2004. The finite sample breakdown point of `1-regression. SIAM Journal on Optimization 14 (4), 1028-1042. [OpenAIRE]

Glover, F., 1975. Improved linear integer programming formulations of nonlinear integer problems. Management Science 22 (4), 455-460. [OpenAIRE]

Hofmann, M., Gatu, C., Kontoghiorghes, E. J., 2010. An exact least trimmed squares algorithm for a range of coverage values. Journal of Computational and Graphical Statistics 19 (1), 191-204. [OpenAIRE]

Jalali-Heravi, M., Konouz, E., 2002. Use of quantitative structure-property relationships in predicting the Krafft point of anionic surfactants. Electron. J. Mol. Des. 1, 410-417. [OpenAIRE]

Maronna, R. A., Martin, R. D., Yohai, V. J., 2006. Robust statistics. Wiley Series in Probability and Statistics. John Wiley & Sons.

24 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2015

socp relaxation bounds for the optimal subset selection problem applied to robust linear regression

Flores, Salvador;