publication . Article . Preprint . 2003

Basic gerbe over non-simply connected compact groups

Gawedzki, Krzysztof; Reis, Nuno;
Open Access
  • Published: 01 Jul 2003 Journal: Journal of Geometry and Physics, volume 50, pages 28-55 (issn: 0393-0440, Copyright policy)
  • Publisher: Elsevier BV
We present an explicit construction of the basic bundle gerbes with connection over all connected compact simple Lie groups. These are geometric objects that appear naturally in the Lagrangian approach to the WZW conformal field theories. Our work extends the recent construction of E. Meinrenken \cite{Meinr} restricted to the case of simply connected groups.
arXiv: Mathematics::Symplectic Geometry
free text keywords: Mathematical Physics, General Physics and Astronomy, Geometry and Topology, Algebra, Simple Lie group, Symplectic group, Mathematics, Spin group, Topology, Lie algebra, Lie theory, Gerbe, Compact group, Maximal torus, Mathematics - Differential Geometry, High Energy Physics - Theory, 22E70

[1] Alvarez, O.: Topological quantization and cohomology. Commun. Math. Phys. 100 (1985), 279-309.

[2] Chatterjee, D. S.: On gerbs. Ph.D. thesis, Trinity College, Cambridge, 1998.

[3] Felder, G., Gawe¸dzki, K., Kupiainen, A.: Spectra of Wess-Zumino-Witten models with arbitrary simple groups. Commun. Math. Phys. 117 (1988), 127-158. [OpenAIRE]

[4] K. Gawe¸dzki, Topological actions in two-dimensional quantum field theories, In: Non-perturbative quantum field theory, eds. G. 't Hooft, A. Jaffe, G. Mack, P. K. Mitter, R. Stora, Plenum Press, New York 1988, pp. 101-142.

[5] K. Gawe¸dzki, A. Kupiainen, Coset construction from functional integral. Nucl. Phys. B 320 (1989), 625-668.

[6] Gawe¸dzki, K., Reis, N.: WZW branes and gerbes. Rev. Math. Phys. 14 (2002), 1281-1334.

[7] Hitchin, N.: Lectures on special Lagrangian submanifolds. arXiv:math.DG/9907 034, Amer. Math. Soc.

[8] Kreuzer, M, Schellekens, A., N.: Simple currents versus orbifolds with discrete torsion - a complete classification. Nucl. Phys. B 411 (1994), 97-121.

[10] Murray, M. K.: Bundle gerbes. J. London Math. Soc. (2) 54 (1996), 403-416.

[11] Murray, M. K., Stevenson, D.: Bundle gerbes: stable isomorphisms and local theory. J. London Math. Soc. (2) 62 (2000), 925-937.

[12] Reis, N.: Ph.D. thesis. In preparation.

[13] Sharpe, E. R.: Discrete torsion and gerbes I, II. arXiv:hep-th/9909108 and 9909120.

[14] Tits, J.: Normalisateurs de tores. I. Groupes de Coxeter ´etendus. J. Algebra 4 (1966), 96-116.

[15] Witten, E,: Non-abelian bosonization in two dimensions. Commun. Math. Phys. 92 (1984), 455-472.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue