publication . Preprint . 2017

Hierarchical On-Surface Synthesis of Deterministic Graphene Nanoribbon Heterojunctions

Bronner, Christopher; Durr, Rebecca A.; Rizzo, Daniel J.; Lee, Yea-Lee; Marangoni, Tomas; Kalayjian, Alin Miksi; Rodriguez, Henry; Zhao, William; Louie, Steven G.; Fischer, Felix R.; ...
Open Access English
  • Published: 15 Nov 2017
Abstract
Bottom-up graphene nanoribbon (GNR) heterojunctions are nanoscale strips of graphene whose electronic structure abruptly changes across a covalently bonded interface. Their rational design offers opportunities for profound technological advancements enabled by their extraordinary structural and electronic properties. Thus far the most critical aspect of their synthesis, the control over sequence and position of heterojunctions along the length of a ribbon, has been plagued by randomness in monomer sequences emerging from step-growth copolymerization of distinct monomers. All bottom-up GNR heterojunction structures created so far have exhibited random sequences o...
Subjects
free text keywords: Condensed Matter - Materials Science
Funded by
NSF| Center for Energy Efficient Electronics Science (Center for E3S)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0939514
  • Funding stream: Directorate for Engineering | Division of Electrical, Communications & Cyber Systems
,
NSF| Theoretical Solid State Physics
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1508412
Download from
27 references, page 1 of 2

[1] [2] [3] [4] [5] [6] [7] [8] Tanaka, K., Yamashita, S., Yamabe, H. & Yamabe, T. Electronic properties of one-dimensional graphite family. Synthetic Materials 17, 143-148 (1987). [OpenAIRE]

Barone, V., Hod, O. & Scuseria, G. E. Electronic Structure and Stability of Semiconducting Graphene Nanoribbons. Nano Lett. 6, 2748-2754 (2006). [OpenAIRE]

Ezawa, M., Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 73, 045432 (2006). [OpenAIRE]

Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

Bennett, P. B. et al. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 103, 253114 (2013).

Llinas, J. P. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

Yoon, Y. & Salahuddin, S. Barrier-free tunneling in a carbon heterojunction transistor. Appl. Phys. Lett. 97, 033102 (2010). [OpenAIRE]

[17] [18] [19] [20] [21] [22] [23] [24] [25] [26] Yoon, Y. & Salahuddin, S. Dissipative transport in rough edge graphene nanoribbon tunnel transistors.

Appl. Phys. Lett. 101, 263501 (2012).

Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).

Phys. Rev. Lett. 98, 206805 (2007).

Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 319, 1229-1232 (2008).

Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872-876 (2009).

Nature 458, 877-880 (2009).

27 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue