# Holographic transformation, belief propagation and loop calculus for generalized probabilistic theories

- Published: 17 Jan 2015
- Publisher: IEEE

[1] M. Mezard and A. Montanari, Information, Physics and Computation. Oxford University Press, 2009.

[2] L. G. Valiant, “Holographic algorithms,” SIAM Journal on Computing, vol. 37, no. 5, pp. 1565-1594, Feb. 2008.

[3] A. Al-Bashabsheh and Y. Mao, “Normal factor graphs and holographic transformations,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 752-763, Feb. 2011.

[4] G. D. Forney, Jr. and P. O. Vontobel, “Partition functions of normal factor graphs,” in Proc. 2011 IEEE Inf. Theory and App. Workshop, La Jolla, CA, Feb. 6-11, 2011. [OpenAIRE]

[5] M. Chertkov and V. Y. Chernyak, “Loop series for discrete statistical models on graphs,” Journal of Statistical Mechanics: Theory and Experiment, no. 06, p. P06009, Jun. 2006.

[6] R. Mori, “Loop calculus for non-binary alphabets using concepts from information geometry,” IEEE Trans. Inf. Theory, 2015, to be published. [Online]. Available: http://arxiv.org/abs/1309.6550v3

[7] T. Ando, “Cones and norms in the tensor product of matrix spaces,” Linear Algebra and its Applications, vol. 379, pp. 3-41, Mar. 2004, special Issue on the Tenth ILAS Conference (Auburn, 2002).

[8] M. M. Wolf, “Quantum channels & operations: Guided tour,” 2012. [Online]. Available: http://www-m5.ma.tum.de/ foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

[9] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A, vol. 68, p. 022312, Aug 2003. [OpenAIRE]

[10] F. Verstraete and J. I. Cirac, “Valence-bond states for quantum computation,” Phys. Rev. A, vol. 70, p. 060302, Dec 2004.

[11] M. B. Hastings, “Quantum belief propagation: An algorithm for thermal quantum systems,” Phys. Rev. B, vol. 76, p. 201102, Nov 2007.

[12] M. Leifer and D. Poulin, “Quantum graphical models and belief propagation,” Annals of Physics, vol. 323, no. 8, pp. 1899-1946, 2008.

[13] C. Laumann, A. Scardicchio, and S. L. Sondhi, “Cavity method for quantum spin glasses on the Bethe lattice,” Phys. Rev. B, vol. 78, p. 134424, Oct 2008.

[14] P. Janotta and H. Hinrichsen, “Generalized probability theories: What determines the structure of quantum theory?” Journal of Physics A: Mathematical and Theoretical, vol. 47, no. 32, p. 323001, 2014. [OpenAIRE]

[15] S. Amari and H. Nagaoka, Methods of Information Geometry, ser. Translations of Mathematical monographs. Oxford University Press, 2000, vol. 191.