publication . Preprint . Article . 2008

QUANTUM WORMHOLE AS A RICCI FLOW

Vladimir Dzhunushaliev;
Open Access English
  • Published: 05 Sep 2008
Abstract
The idea is considered that a quantum wormhole in a spacetime foam can be described as a Ricci flow. In this interpretation the Ricci flow is a statistical system and every metric in the Ricci flow is a microscopical state. The probability density of the microscopical state is connected with a Perelman's functional of a rescaled Ricci flow.
Subjects
arXiv: Mathematics::Differential GeometryPhysics::Fluid DynamicsMathematics::Metric Geometry
free text keywords: General Relativity and Quantum Cosmology, High Energy Physics - Theory, Mathematical Physics, Mathematics - Differential Geometry, Physics and Astronomy (miscellaneous), Ricci flow, Wormhole, Probability density function, Quantum, Physics, Spacetime

4 3 [1] J. Wheeler, Ann. of Phys., 2, 604(1957).

[2] R. Hamilton, J. Diff. Geom., 17, 255 (1982).

[3] G. Perelman, preprint [arxiv:math.DG/0211159]; preprint [arxiv:math.DG/0303109].

[4] V. Husain and S. S. Seahra, “Ricci flows, wormholes and critical phenomena,” arXiv:0808.0880 [gr-qc].

[5] J. M. Isidro, J. L. G. Santander and P. F. de Cordoba, arXiv:0808.2717 [hep-th].

[6] J. M. Isidro, J. L. G. Santander and P. F. de Cordoba, arXiv:0808.2351 [hep-th].

[7] M. Headrick and T. Wiseman, Class. Quant. Grav. 23, 6683 (2006), [arXiv:hep-th/0606086].

[8] E. Woolgar, arXiv:0708.2144 [hep-th].

[9] Michael T. Anderson, Notices of the AMS, 51, 184-193 (2004).

[10] J. Polchinski, String theory (Cambridge University Press, Cambridge, 1998).

[11] C. Rovelli, Living Rev. Rel. 1-1 (1998).

[12] P. Topping, Lectures on the Ricci Flow, London Mathematical Society Lecture Notes Series 325, Cambridge University Press (2006).

[13] V. Dzhunushaliev and V. Folomeev, “4D static solutions with interacting phantom fields,” arXiv:0711.2840 [gr-qc].

[14] A. DeBenedictis, R. Garattini and F. S. N. Lobo, “Phantom stars and topology change,” arXiv:0808.0839 [gr-qc].

[15] In our notations the time is the parameter λ.

Any information missing or wrong?Report an Issue