publication . Preprint . Article . 2012

Global weak solutions for coupled transport processes in concrete walls at high temperatures

M. Beneš; R. Štefan;
Open Access English
  • Published: 22 Oct 2012
Abstract
Comment: 18 pages
Subjects
free text keywords: Mathematical Physics, Mathematics - Analysis of PDEs, Applied Mathematics, Computational Mechanics, Nonlinear boundary conditions, Pore water pressure, Nonlinear system, Spall, A priori and a posteriori, Weak solution, Explosive material, Parabolic system, Mathematical analysis, Mathematics
32 references, page 1 of 3

[1] A. Adams and J.F. Fournier, Sobolev spaces, Pure and Applied Mathematics 140 (Academic Press, 1992).

[2] A. Alnajim, Modelisation et simulation du comportement du beton sous hautes temperatures par une approche thermo-hygro-mechanique couplee. Application a des situations accidentelles (Dissertation, Universite de Merne la Vallee, 2004).

[3] H.W. Alt, S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183, 311-341 (1983). [OpenAIRE]

[4] Z.P. Baˇzant, Analysis of Pore Pressure, Thermal Stress and Fracture in Rapidly Heated Concrete, International Workshop on Fire Performance of High-Strength Concrete, 155-164 (1997).

[5] Z.P. Baˇzant and W. Thonguthai, Pore pressure and drying of concrete at high temperature, Proc. ASCE J. Eng. Mech. Div. 104, 1058-1080 (1978).

[6] Z.P. Baˇzant, J.C. Chern and W. Thonguthai, Finite element program for moisture and heat transfer in heated concrete, Nucl. Engrg. and Design 68, 61-70 (1980).

[7] Z.P. Baˇzant and M.F. Kaplan, Concrete at high temperatures, Material Properties and Mathematical Models (Longman, Burnt Mill, England, 1996).

[8] M. Beneˇs and P. Mayer, Coupled Model of Hygro-Thermal Behaviour of Concrete During Fire, J. Comp. Appl. Math. 218, 12-20 (2008).

[9] M. Beneˇs, R. Sˇtefan and J. Zeman, Analysis of coupled transport phenomena in concrete at elevated temperatures, Appl. Math. Comput., doi:10.1016/j.amc.2011.02.064 (2011).

[10] M. Beneˇs and J. Zeman, Some Properties of Strong Solutions to Nonlinear Heat and Moisture Transport in Multi-layer Porous Structures, Nonlin. Anal. RWA, doi: 10.1016/j.nonrwa.2011.11.015 (2011).

[11] J.H. Chung and G.R. Consolazio, Numerical modeling of transport phenomena in reinforced concrete exposed to elevated temperatures, Cement Concrete Res. 35, 597-608 (2005).

[12] S. Dal Pont and A. Ehrlacher, Numerical and experimental analysis of chemical dehydration, heat and mass transfer in a concrete hollow cylinder submitted to high temperatures, Int. J. Heat and Mass transfer 47, 135-147 (2004).

[13] J. Dal´ık, J. Danˇeˇcek and J. Vala, Numerical Solution of the Kiessl Model, Appl. Math. 45, 3-17 (2000).

[14] C.T. Davie, C.J. Pearce and N. Bicanic, A fully generalised, coupled, multi-phase, hygrothermo-mechanical model for concrete, Mat. Struct. 43, 13-33 (2010).

[15] R. Denk, M. Hieber and J. Pru¨ss, Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z. 27, 193-224 (2007). [OpenAIRE]

32 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2012

Global weak solutions for coupled transport processes in concrete walls at high temperatures

M. Beneš; R. Štefan;