Lagrangian cobordism and tropical curves

Preprint English OPEN
Sheridan, Nick; Smith, Ivan;
  • Subject: 53D35, 53D37, 14T05, 14C25 | Mathematics - Symplectic Geometry | Mathematics - Algebraic Geometry
    arxiv: Mathematics::Geometric Topology | Mathematics::Algebraic Topology | Mathematics::Symplectic Geometry

We study a cylindrical Lagrangian cobordism group for Lagrangian torus fibres in symplectic manifolds which are the total spaces of smooth Lagrangian torus fibrations. We use ideas from family Floer theory and tropical geometry to obtain both obstructions to and constru... View more
  • References (6)

    [EKL06] Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind, Non-Archimedean amoebas and tropical varieties, J. fu¨r die Reine und Angew. Math. 601 (2006), 139-157.

    [FOOO13] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian Floer theory over integers: spherically positive symplectic manifolds, Pure Appl. Math. Q. 9 (2013), no. 2, 189-289.

    [OP91] Tadao Oda and Hye Sook Park, Linear Gale transforms and Gel'fand-Kapranov-Zelevinskij decompositions, Tohoku Math. J. (2) 43 (1991), no. 3, 375-399.

    [Rab12] Joseph Rabinoff, Tropical analytic geometry, Newton polygons, and tropical intersections, Adv. Math. 229 (2012), no. 6, 3192-3255.

    [Rez97] Alexander Reznikov, Characteristic classes in symplectic topology, Selecta Math. (N.S.) 3 (1997), no. 4, 601-642, Appendix D by Ludmil Katzarkov.

    [Seia] Paul Seidel, Fukaya A1 structures associated to Lefschetz fibrations. IV 1/2, Preprint, available at arXiv:1802.09461.

  • Metrics
Share - Bookmark