publication . Article . Other literature type . Preprint . 2005

Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature.

Zhang, Gang; Li, Baowen;
Open Access
  • Published: 15 Sep 2005 Journal: The Journal of Chemical Physics, volume 123, page 14,705 (issn: 0021-9606, eissn: 1089-7690, Copyright policy)
  • Publisher: AIP Publishing
Abstract
We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality, isotope impurity, tube length and temperature by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also found that the tube length dependence of thermal conductivity is different for nanotubes of different radius at different temperatures.
Subjects
arXiv: Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: Physical and Theoretical Chemistry, General Physics and Astronomy, Nanotechnology, Potential applications of carbon nanotubes, Optical properties of carbon nanotubes, Selective chemistry of single-walled nanotubes, Chemistry, Carbon nanotube, law.invention, law, Carbon nanotube quantum dot, Carbon, chemistry.chemical_element, Chemical physics, Mechanical properties of carbon nanotubes, Lattice (order), Atomic physics, Isotope, Condensed matter physics, Radius, Impurity, Thermal conductivity, Thermal conduction, Non-equilibrium thermodynamics, Electronic conductivity, Condensed Matter - Mesoscale and Nanoscale Physics, Nonlinear Sciences - Chaotic Dynamics
18 references, page 1 of 2

London, 1998) 2 R. Satio, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,

Phys. Rev. B. 46, 1804, (1992). 3 J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev.

Lett. 68, 631, (1992). 4 S. J. Tans et al., Nature 386, 474 (1997). 5 J. Callaway, Phys. Rev. 113, 1046 (1959). 6 J. R. Olson et al., Phys. Rev. B 47, 14850 (1993). 7 T. R. Anthony et al., Phys. Rev. B 42, 1104 (1990). 8 J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. [OpenAIRE]

B 59, R2514 (1999). 9 P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys.

Rev. Lett. 87, 215502 (2001). 10 D. J. Yang et al, Phys. Rev. B 66, 165440 (2002). 11 W. Yi et al, Phys. Rev. B. 59, R9015, (1999). 12 J. Che, T. Cagin, and W. A. Goddard III, Nanotech.11,

65 (2000). 13 S. Berber. Y.-K Kwon, and D. Tomnek, Phys. Rev. Lett.

84, 4613, (2000). 14 S. Maruyama, Physica B 323, 193 (2002) 15 S. Maruyama, Mic. Therm. Eng. 7, 41 (2003). 16 C. W. Padgett and D. W. Brenner, Nano Lett. 4, 1051

(2004). 17 W. Zhang et al, Nanotechnology, 15, 936 (2004). 18 S Shenogin et al, App. Phys. Lett. 85, 2229 (2004). 19 Z.-H Yao, J.-S Wang, B. Li, and G.-R Liu, Phys. Rev. B

71, 085417 (2005), 20 L. X. Benedict et al., Solid State Comm. 100, 177 (1996). 21 T. Yamamoto, S. Watanabe, and K. Watanabe, Phys. Rev.

Lett. 92, 075502 (2004). 22 N. Raravikar et al, Phys. Rev. B 66, 235424 (2002). 23 J Tersoff, Phys. Rev. B 39, 5566 (1989). 24 S. NoseĀ“, J. Chem. Phys. 81, 511 (1984); W. G. Hoover,

Phys. Rev. A 31, 1695 (1985). 25 J. Yu, R. K. Kalia, and P. Vashishta, J. Chem. Phys. 103,

6697(1995). 26 V. G. Plekhanov, Mate. Sci. Eng. 35, 139 (2001). 27 H Kaburaki and M. Machida, Phys. Lett. A181, 85 (1993);

S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 78, 1896

(1997). B. Hu, B. Li, and H. Zhao, Phys. Rev. E 61, 3828

(2000). A. Pereverzev, ibid. 68, 056124 (2003). 28 J. S. Wang and B. Li, Phys. Rev. Lett. 92, 074302 (2004);

18 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . Preprint . 2005

Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature.

Zhang, Gang; Li, Baowen;