publication . Preprint . 2013

Make your Boy surface

Ogasa, Eiji;
Open Access English
  • Published: 26 Mar 2013
Abstract
Comment: 14pages, 15 figures
Subjects
free text keywords: Mathematics - Geometric Topology
Download from

[1] W. Boy: U¨ber die Curvatura integra und die Topologie geschlossener Flchen, Math. Ann. 57 (1903) 151-184. [OpenAIRE]

[2] C. Giller: Towards a classical knot theory for surfaces in R4 Illinois. J. Math. 26 (1982) 591-631. [OpenAIRE]

[3] J. W. Milnor and J. D. Stasheff: Characteristic classes. Annals of Mathematics Studies, No. 76. Princeton University Press 1974. [OpenAIRE]

[4] E. Ogasa: The projections of n-knots which are not the projection of any unknotted knot Journal of knot theory and its ramifications, 10 (2001) 121-132 UTMS 97-34, math.GT/0003088

[5] E. Ogasa: Singularities of projections of n-dimensional knots Mathematical Proceedings of Cambridge Philosophical Society 126 (1999) 511-519 UTMS96-39

[6] E. Ogasa: Ijigen e no tobira (In Japanese) Nippon Hyoron Sha Co., Ltd. 2009 Eiji Ogasa Computer Science, Meijigakuin University, Yokohama, Kanagawa, 244-8539, Japan ogasa@mail1.meijigkakuin.ac.jp pqr100pqr100@yahoo.co.jp http://www.geocities.jp/n dimension n dimension/list.html (Don't forget the three in this address. You can find this website by typing in the author's name 'Eiji Ogasa' in the search engine.)

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue