publication . Article . Other literature type . Preprint . 2012

Quantum capacity under adversarial quantum noise: arbitrarily varying quantum channels

Rudolf Ahlswede; Igor Bjelaković; Holger Boche; Janis Nötzel;
Open Access English
  • Published: 20 Nov 2012
  • Country: Germany
Abstract
Comment: 49 pages, no figures, final version of our papers arXiv:1010.0418v2 and arXiv:1010.0418. Published "Online First" in Communications in Mathematical Physics, 2012
Subjects
arXiv: Computer Science::Information Theory
free text keywords: ddc:620, ddc:, Quantum Physics, Computer Science - Information Theory, Mathematical Physics, Statistical and Nonlinear Physics, Quantum information, Quantum operation, Classical capacity, Quantum capacity, Quantum error correction, Quantum channel, Amplitude damping channel, Quantum algorithm, Mathematics, Topology
Related Organizations

10 An example and an application to zero-error capacities 10.1 Erasure-AVQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Qualitative behavior of zero-error capacities . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Discontinuity of quantum Lov´asz θ˜ function & zero-error distillable entanglement . . . . .

[19] M. Horodecki, P. Horodecki, “Reduction criterion of separability and limits for a class of distillation protocols”, Phys. Rev. A Vol. 59, No. 6, 4206 (1999)

[20] M. Horodecki, P. Horodecki, R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation ”, Phys. Rev. A 60, 18881898 (1999)

[21] S. Kakutani, “A Generalization of Brouwer's Fixed Point Theorem”, Duke Math. J., Volume 8, Number 3, 457-459 (1941) [OpenAIRE]

[22] J. Kiefer, J. Wolfowitz, “Channels with arbitrarily varying channel probability functions”, Information and Control 5, 44-54 (1962) [OpenAIRE]

[23] A.Y. Kitaev, A.H. Shen, M.N. Vyalyi, Classical and Quantum Computation, Graduate Studies in Mathematics 47, American Mathematical Society, Providence, Rhode Island 2002

[24] E. Knill, R. Laflamme, “Theory of quantum error-correcting codes”, Phys. Rev. A Vol. 55, No. 2, 900-911 (1997) [OpenAIRE]

[25] J. K¨orner, A. Orlitsky, “Zero-error Information Theory”, IEEE Trans. Inf. Theory Vol. 44, No. 6, 2207-2229 (1998)

[26] D. Leung, G. Smith, “Continuity of quantum channel capacities”, Commun. Math. Phys. 292, 201- 215, (2009)

[27] E.H. Lieb and M.B. Ruskai, “Proof of the strong subadditivity of quantum-mechanical entropy”, J. Math. Phys. 14, 1938 (1973) [OpenAIRE]

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . Preprint . 2012

Quantum capacity under adversarial quantum noise: arbitrarily varying quantum channels

Rudolf Ahlswede; Igor Bjelaković; Holger Boche; Janis Nötzel;