Quantum capacity under adversarial quantum noise: arbitrarily varying quantum channels

Preprint English OPEN
Ahlswede, Rudolf; Bjelakovic, Igor; Boche, Holger; Noetzel, Janis;
(2010)
  • Related identifiers: doi: 10.1007/s00220-012-1613-x
  • Subject: Mathematical Physics | Computer Science - Information Theory | Quantum Physics
    arxiv: Computer Science::Information Theory

We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiv... View more
  • References (10)

    10 An example and an application to zero-error capacities 10.1 Erasure-AVQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Qualitative behavior of zero-error capacities . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Discontinuity of quantum Lov´asz θ˜ function & zero-error distillable entanglement . . . . .

    [19] M. Horodecki, P. Horodecki, “Reduction criterion of separability and limits for a class of distillation protocols”, Phys. Rev. A Vol. 59, No. 6, 4206 (1999)

    [20] M. Horodecki, P. Horodecki, R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation ”, Phys. Rev. A 60, 18881898 (1999)

    [21] S. Kakutani, “A Generalization of Brouwer's Fixed Point Theorem”, Duke Math. J., Volume 8, Number 3, 457-459 (1941)

    [22] J. Kiefer, J. Wolfowitz, “Channels with arbitrarily varying channel probability functions”, Information and Control 5, 44-54 (1962)

    [23] A.Y. Kitaev, A.H. Shen, M.N. Vyalyi, Classical and Quantum Computation, Graduate Studies in Mathematics 47, American Mathematical Society, Providence, Rhode Island 2002

    [24] E. Knill, R. Laflamme, “Theory of quantum error-correcting codes”, Phys. Rev. A Vol. 55, No. 2, 900-911 (1997)

    [25] J. K¨orner, A. Orlitsky, “Zero-error Information Theory”, IEEE Trans. Inf. Theory Vol. 44, No. 6, 2207-2229 (1998)

    [26] D. Leung, G. Smith, “Continuity of quantum channel capacities”, Commun. Math. Phys. 292, 201- 215, (2009)

    [27] E.H. Lieb and M.B. Ruskai, “Proof of the strong subadditivity of quantum-mechanical entropy”, J. Math. Phys. 14, 1938 (1973)

  • Metrics
Share - Bookmark