publication . Preprint . 2010

A Neuro-Fuzzy Multi Swarm FastSLAM Framework

Havangi, R.; Teshnehlab, M.; Nekoui, M. A.;
Open Access English
  • Published: 22 Mar 2010
Abstract
FastSLAM is a framework for simultaneous localization using a Rao-Blackwellized particle filter. In FastSLAM, particle filter is used for the mobile robot pose (position and orientation) estimation, and an Extended Kalman Filter (EKF) is used for the feature location's estimation. However, FastSLAM degenerates over time. This degeneracy is due to the fact that a particle set estimating the pose of the robot loses its diversity. One of the main reasons for loosing particle diversity in FastSLAM is sample impoverishment. It occurs when likelihood lies in the tail of the proposal distribution. In this case, most of particle weights are insignificant. Another proble...
Subjects
arXiv: Computer Science::Robotics
free text keywords: Computer Science - Robotics
Download from
26 references, page 1 of 2

[1] M. W. M. G. Dissanayake, P. Newman, S. Clark, and H. F. Dur rantWhyte, “A solution to the simultaneous localization and map building (SLAM) problem”, IEEE Tran Robot Automat, vol. 17, no. 3, pp.229-241, Jun. 2001.

[2] S. Thrun, D. Fox, and W. Burgard, “A probabilistic approach to concurrent mapping and localization for mobile robots,” Mach. Learn., vol. 31, pp. 29-53, 1998.

[3] R. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty,” Int. J. Robot. Res., vol. 5, no. 4, pp. 56-68, 1986.

[4] M. Bosse, J. Leonard, and S. Teller, J. Leonard, J. D. Tard'os, S. Thrun,and H. Choset, Eds., “Large-scale CML using a network of multiple local maps,” in workshop Notes of the ICRA Workshop on Concur rent Mapping and Localization for Autonomous Mobile Robots(W4),Washington, D.C., 2002.

[5] T. Bailey, “Mobile robot localization and mapping in extensive outdoor environments,” Ph.D. dissertation, Univ. Sydney, Sydney, NSW, Australia, 2002.

[6] S. Williams, G.Dissanayake, and H. F. Durrant-Whyte, “Towards terrain- aided navigation for underwater robotics,” Adv. Robot., vol. 15,no. 5, pp. 533-550, 2001.

[7] S. Thrun, D. H¨ ahnel, D. Ferguson, M. Montemerlo, R. Triebel, W.Burgard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker, “A system for volumetric robotic mapping of abandoned mines,” in Proc. IEEE Int. Conf Robot. Automat. Taipei, Taiwan, May 2003, pp.4270-4275.

[8] A. Eliazar, R. Parr,” DP-SLAM: fast, robust simultaneous localiza tion and mapping without predetermined landmarks”, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2003.

[9] D. Roller, M. Montemerlo, S.Thrun, B. Wegbreit, “Fastslam 2.0: an in: Proc. of the Conf. on Neural Information Processing Systems (NIPS), Denver, CO, USA, 1999, pp.1015-1021.

[11] Montemerlo M, Thrun S, Koller D, Wegbreit B (2002), ” Fast SLAM: a factored solution to the simultaneous localization and mapping problem”, In: Proc. AAAI national conf. artif. intell., Edmonton,AB, Canada.

[12] S. Thrun, W. Burgard, and D. Fox, ”Probabilistic robotics” , MIT Press, Cambridge, 2005.

[13] T. Bailey, J. Nieto, and E. Nebot, ”Consistency of the FastSLAM algorithm”, IEEE International Conference on Robotics and Automation.pp.424-429, 2006. [OpenAIRE]

[14] M. Boli´c, P. M. Djuri´c, and S. Hong,”Resampling algorithms for particle filters: a computational complexity perspective” ,Journal on Applied Signal Processing, no. 15, pp. 2267-2277, 2004.

[15] R. K. Mehra, “On the identification of variances and adaptive Kalman filtering”, IEEE Trans. Autom. Control, vol. AC-15, no. 2, pp. 175-184, Apr. 1970. [OpenAIRE]

[16] C. Kim, R. Sakthivel and W. K. Chung, “Unscented FastSLAM: A Robust and Efficient Solution to the SLAM Problem”, IEEE Trans. Robot., vol. 24, no. 4, 2008.

26 references, page 1 of 2
Any information missing or wrong?Report an Issue