Voltage interval mappings for an elliptic bursting model

Preprint English OPEN
Wojcik, Jeremy; Shilnikov, Andrey;
  • Related identifiers: doi: 10.1016/j.physd.2011.04.003
  • Subject: Nonlinear Sciences - Chaotic Dynamics
    arxiv: Quantitative Biology::Neurons and Cognition | Nonlinear Sciences::Pattern Formation and Solitons | Astrophysics::High Energy Astrophysical Phenomena

We employed Poincar\'e return mappings for a parameter interval to an exemplary elliptic bursting model, the FitzHugh-Nagumo-Rinzel model. Using the interval mappings, we were able to examine in detail the bifurcations that underlie the complex activity transitions betw... View more
  • References (40)
    40 references, page 1 of 4

    1. Wojcik J. and Shilnikov A. Voltage interval mappings for dynamics transitions in elliptic bursters. Physica D, 240:1164-1180, 2011.

    2. F. Argoul and J.C. Roux. Quasiperiodicity in chemistry: an experimental path in the neibourhood of a codimension-two bifurcation. Physics Letters, 108A(8):426-430, 1985.

    3. J. Rinzel. A formal classification of bursting mechanisms in excitable systems. In Proc. International Congress of Mathematics ed A M Gleason (AMS) 157893, 1987.

    4. J. Rinzel and Y. S. Lee. Dissection of a model for neuronal parabolic bursting. J Math Biol, 25(6):653-675, 1987.

    5. R. Bertram, M.J. Butte, T. Kiemel, and A. Sherman. Topological and phenomenological classification of bursting oscillations. Bull.Math.Biol., 57(3):413-439, May 1995.

    6. J. Guckenheimer. Towards a global theory of singularly perturbed systems. Progress in Nonlinear Differential Equations and Their Applications, 19:214-225, 1996.

    7. V.I. Arnold, V.S. Afraimovich, Yu.S. Ilyashenko, and L.P. Shilnikov. Bifurcation Theory, volume V of Dynamical Systems. Encyclopaedia of Mathematical Sciences. Springer, 1994.

    8. E.F. Mischenko, Yu.S. Kolesov, A.Yu. Kolesov, and N.Kh. Rozov. Asymptotic methods in singularly perturbed systems. Monographs in Contemporary Mathematics. Consultants Bureau, New York, 1994.

    9. A.N. Tikhonov. On the dependence of solutions of differential equations from a small parameter. Mat. Sbornik, 22(64):193-204, 1948.

    10. A. I. Neishtadt. On delayed stability loss under dynamical bifurcations i. Dfferential Equations, 23:1385-1390, 1988.

  • Metrics
Share - Bookmark