publication . Preprint . 2010

On Lovelock vacuum solution

Dadhich, Naresh;
Open Access English
  • Published: 02 Jun 2010
Abstract
We show that the asymptotic large $r$ limit of all Lovelock vacuum and electrovac solutions with $\Lambda$ is always the Einstein solution in $d \geq 2n+1$ dimensions. It is completely free of the order $n$ of the Lovelock polynomial indicating universal asymptotic behaviour.
Subjects
free text keywords: High Energy Physics - Theory, Astrophysics - Cosmology and Nongalactic Astrophysics, General Relativity and Quantum Cosmology
Download from
21 references, page 1 of 2

[1] N. Dadhich, Subtle is the Gravity, gr-qc/0102009.

[2] S. Perlmutter et. al., Astrophys. J. 483, 565 (1997); Nature 391, 51 (1998).

[3] N.Dadhich, Universalization as a Physical guiding Principle, gr-qc/0311028; On the Gauss Bonnet Gravity, Mathematical Physics, (Proceedings of the 12th Regional Conference on Mathematical Physics), Eds., M.J. Islam, F. Hussain, A. Qadir, Riazuddin and Hamid Saleem, World Scientific, 331 (hep-th/0509126); Formation of a Black Hole from an AdS Spacetime, Theoretical High Energy Physics (Proceedings of the International Workshop on Theoretical High Energy Physics), Ed. A. Misra, American Institute of Physics, 101 (arXiv:0705.2490).

[4] N. Dadhich, Pramana 74, 875 (1010), arXiv:0802.3034.

[5] B. Zwiebach, Phys. Lett. B156, 315 (1985).

[6] The Einstein-GB vacuum equation would however read as Gab +αGBHab = −Λgab where αGB is the GB coupling constant. In absence of maatter in higher dimensions, it would perhaps be appropriate to consider only the GB vacuum part Hab = −Λgab.

[7] B. Whitt, Phys. Rev. D38, 3000 (1988); R. C. Myers and J. Z. Simon, Phys. Rev. 38, 2434 (1988). (It came to my notice after v3 was put up)

[8] B. Whitt, Phys. Rev. D38, 3000 (1988).

[9] N. Dadhich, On the Schwarzschild field, gr-qc/9704068.

[10] D.G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985); J. T. Wheeler, Nucl. Phys. B268, 737 (1986), B273, 732 (1986).

[11] M. Dehghani and N. Farhangkhah, Phys. Rev. D78, Most humbly I dedicate this work to the fond memory of Professor P. C. Vaidya who had always been a source of inspiration for me. 064015 (2008).

[12] M Banados, C. Teitelboim and J. Zanelli, Phys. Rev. D49, 975 (1994); J. Crisostomo, R. Troncoso and J Zanelli, Phys. Rev. 62, 084013 (2000); R. G. Cai and N. Ohta, Phys. Rev. D74, 0604001 (2006).

[13] M. Banados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992); S. Bose, N. Dadhich and S. Kar, Phys. Lett. B477, 451 (2000).

[14] B. Cuadros-Melgar, E. Papantonopoulos, M. Tsoukalas and V. Zamarias, Phys. Rev. Lett. 100, 221601 (2008); Nucl. Phys. B810, 246 (2009).

[15] M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989); N. Dadhich, K. Narayan and U. Yajnik, Pramana 50, 307 (1998) (gr-qc/9703034).

21 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue