What is the time scale of random sequential adsorption?

Preprint English OPEN
Erban, Radek; Chapman, S. Jonathan;
(2006)
  • Related identifiers: doi: 10.1103/PhysRevE.75.041116
  • Subject: Physics - Chemical Physics | Quantitative Biology - Quantitative Methods
    arxiv: Physics::Chemical Physics

A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is presented. The model combines two important features of the adsorption process: (i) the kinetics of the chemical reaction between adsorbing molecules and the surface; a... View more
  • References (9)

    [1] J. Evans, Reviews of Modern Physics 65, 1281 (1993).

    [2] R. Erban, S. J. Chapman, K. Fisher, I. Kevrekidis, and L. Seymour, 22 pages, to appear in Mathematical Models and Methods in Applied Sciences (M3AS), available as arxiv.org/physics/0602001, 2006.

    [3] R. Erban and S. J. Chapman, to appear in Journal of Statistical Physics, available as arxiv.org/physics/0609029, 2006.

    [4] V. Sˇubr, Cˇ. Konˇ´ak, R. Laga, and K. Ulbrich, Biomacromolecules 7, 122 (2006).

    [5] S. Andrews and D. Bray, Physical Biology 1, 137 (2004).

    [6] J. Hattne, D. Fagne, and J. Elf, Bioinformatics 21, 2923 (2005).

    [7] S. Isaacson and C. Peskin, SIAM Journal on Scientific Computing 28, 47 (2006).

    [8] R. Erban and S. J. Chapman, 24 pages, submitted to Physical Biology, available as arxiv.org/physics/0611251, 2006.

    [9] Sˇ. Prokopov´a-Kubinov´a, L. Vargov´a, L. Tao, K. Ulbrich, V. Sˇubr, E. Sykov´a, and C. Nicholson, Biophysical Journal 80, 542 (2001).

  • Related Organizations (3)
  • Metrics
Share - Bookmark