Five-dimensional Monopole Equation with Hedge-Hog Ansatz and Abel's Differential Equation

Preprint English OPEN
Kihara, Hironobu;
(2008)

We review the generalized monopole in the five-dimensional Euclidean space. A numerical solution with the Hedge-Hog ansatz is studied. The Bogomol'nyi equation becomes a second order autonomous non-linear differential equation. The equation can be translated into the Ab... View more
  • References (2)

    [1] P. A. M. Dirac, Phys. Rev. 74 (1948) 817. [2] A. M. Polyakov, JETP Lett. 20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430]. [3] G. 't Hooft, Nucl. Phys. B 79, 276 (1974). [4] C. N. Yang, J. Math. Phys. 19, 320 (1978). [5] D. H. Tchrakian, J. Math. Phys. 21, 166 (1980). [6] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, Phys. Lett. B 59, 85 (1975). [7] E. B. Bogomol'nyi, Sov. J. Nucl. Phys. 24, 449 (1976) [Yad. Fiz. 24, 861 (1976)]. [8] M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975). [9] H. Kihara, Y. Hosotani and M. Nitta, Phys. Rev. D 71, 041701 (2005) [arXiv:hep-th/0408068]. [10] N. H. Abel, J. Reine Angew. 4, (1829).

    [11] G. M. Murphy, “Ordinary Differential Equations and Their Solutions,” D. Van Nostrand Company, INC. USA

  • Metrics
    No metrics available
Share - Bookmark