publication . Preprint . 2008

Adjamagbo Determinant and Serre conjecture for linear groups over Weyl algebras

Adjamagbo, Kossivi;
Open Access English
  • Published: 08 Jan 2008
Abstract
Thanks to the theory of determinants over an Ore domain, also called Adjamagbo determinant by the Russian school of non commutative algebra, we extend to any Weyl algebra over a field of characteristic zero Suslin theorem solving what Suslin himself called the $K_1$-analogue of the well-known Serre Conjecture and asserting that for any integer $n$ greater than 2, any $n$ by $n$ matrix with coefficients in any algebra of polynomials over a field and with determinant one is the product of elementary matrices with coefficients in this algebra
Subjects
arXiv: Mathematics::K-Theory and Homology
free text keywords: Mathematics - K-Theory and Homology, Mathematics - Rings and Algebras
Download from
19 references, page 1 of 2

[1] K. Adjamagbo, Sur le groupe de Whitehead et les syst`emes d'´equations aux d´eriv´ees partielles, C.R.Acad.Sc. Paris, t. 299, serie I, n. 7, 1984, p. 205-208.

[2] K. Adjamagbo, Sur la calculabilit´e des d´eterminants de matrices d'op´erateurs differentiels, in Actes du Colloque d'Alg`ebre 1985 de Rennes, Universit´e de Rennes I.

[3] K. Adjamagbo, Sur l'effectivit´e du lemme du vecteur cyclique, C.R.Acad.Sc. Paris, t. 306, serie I, 1988, p. 543-546.

[4] K. Adjamagbo, Fondements de la th´eorie des d´eterminants sur un domaine de Ore, Th`ese d'´etat, Universit´e de Paris 6, 1991, to appear.

[5] K. Adjamagbo, Panorama de la th´eorie des d´eterminants sur un anneau non commutatif, Bull. Sc. Math., 2-`eme s´erie, 117(1993), p. 401-420.

[6] K. Adjamagbo, On the determinant theory and the K1-theorie of non commutative, Pr´epublication de l'Institut de Math´ematiques de Jussieu, 66(1996).

[7] H. Bass, E. Connell, D. Wright The Jacobian Conjecture : Reduction of Degree and Formal Expansion of the Inverse, Bull. Amer. Math. Soc., Vol. 7, Num. 2, (1982), pp 287-330. [OpenAIRE]

[8] J.-E. Bjork, Analytic D-modules and Applications, Kluwer Academic Publishers, Vol. 247, 1993.

[9] H. Bass, J. Milnor, J.-P. Serre, Solution of the convergence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2), Publ. I.H.E.S., 33, (1967), p.421-499. [OpenAIRE]

[10] P. M. Cohn, On the structure of GL2 of a ring, Publ. I.H.E.S., 30, (1966), p.365-413.

[11] Alexander. E. Gunterman, Linear tranformations that preserve Adjamagbo determinant (Russian), in Mathematical methods and applications (Russian), (1998), p. 67-72, Mosk. Gos. Sots. Univ., Moscow.

[12] Alexander. E. Gunterman, Singularity preservers over local domains, J. Math. Sci. (Newyork)102(2000), no. 6, p. 4591-4597.

[13] Alexander. E. Gunterman, Frobenius Type Theorems in the Noncommutative Case, Linear and Multilinear Algebra 48(2001), no. 4, p. 293-311.

[14] Alexander. E. Gunterman, Alexander V. Mikhalev, On determinant preservers over noncommutative Principal Ideal Domains, Second International Tainan-Moscow Algebra Workshop, Walter Deruyter and Co., Berlin/New-York, 1999.

[15] Alexander. E. Gunterman, Alexander V. Mikhalev, General algebra and linear mappings that preserve matrix invariants (Russian, English summary), Proceedings of the International session of Algebraic Seminar dedicated to the 70th Anniversary of the algebraic Seminars of Moscow state University, Fundam. Prikl. Mat. 9, (2003), no; 1, p; 83-101.

19 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue