Real-time regression analysis with deep convolutional neural networks

Preprint English OPEN
Huerta, E. A.; George, Daniel; Zhao, Zhizhen; Allen, Gabrielle;
(2018)
  • Subject: Statistics - Machine Learning | Computer Science - Artificial Intelligence | Astrophysics - Instrumentation and Methods for Astrophysics | Computer Science - Learning

We discuss the development of novel deep learning algorithms to enable real-time regression analysis for time series data. We showcase the application of this new method with a timely case study, and then discuss the applicability of this approach to tackle similar chal... View more
  • References (34)
    34 references, page 1 of 4

    [1] D. George and E. A. Huerta, “Deep neural networks to enable realtime multimessenger astrophysics,” Phys. Rev. D, vol. 97, p. 044039, Feb 2018.

    [2] D. George and E. A. Huerta, “Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data,” Physics Letters B, vol. 778, pp. 64-70, Mar. 2018.

    [3] D. George, H. Shen, and E. A. Huerta, “Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO,” ArXiv e-prints, June 2017.

    [4] D. George, H. Shen, and E. A. Huerta, “Glitch Classification and Clustering for LIGO with Deep Transfer Learning,” ArXiv e-prints, Nov. 2017.

    [5] B. J. Owen and B. S. Sathyaprakash, “Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement,” Phys. Rev. D , vol. 60, p. 022002, July 1999.

    [6] N. Indik, H. Fehrmann, F. Harke, B. Krishnan, and A. B. Nielsen, “Reducing the number of templates for aligned-spin compact binary coalescence gravitational wave searches,” ArXiv e-prints, Dec. 2017.

    [7] I. Harry, S. Privitera, A. Bohe´, and A. Buonanno, “Searching for gravitational waves from compact binaries with precessing spins,” Phys. Rev. D , vol. 94, p. 024012, July 2016.

    [8] R. Smith, S. E. Field, K. Blackburn, C.-J. Haster, M. Pu¨rrer, V. Raymond, and P. Schmidt, “Fast and accurate inference on gravitational waves from precessing compact binaries,” Phys. Rev. D , vol. 94, p. 044031, Aug. 2016.

    [9] E. A. Huerta, R. Haas, E. Fajardo, D. S. Katz, S. Anderson, P. Couvares, J. Willis, T. Bouvet, J. Enos, W. T. C. Kramer, H. W. Leong, and D. Wheeler, “BOSS-LDG: A Novel Computational Framework that Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery,” ArXiv e-prints, Sept. 2017.

    [10] P. Graff, F. Feroz, M. P. Hobson, and A. Lasenby, “BAMBI: blind accelerated multimodal Bayesian inference,” MNRAS , vol. 421, pp. 169- 180, Mar. 2012.

  • Related Organizations (3)
  • Metrics
Share - Bookmark