publication . Article . Preprint . 2011

Hausdorff dimension of the multiplicative golden mean shift

Kenyon, Richard; Peres, Yuval; Solomyak, Boris;
Open Access
  • Published: 17 May 2011 Journal: Comptes Rendus Mathematique, volume 349, pages 625-628 (issn: 1631-073X, Copyright policy)
  • Publisher: Elsevier BV
Comment: 5 pages, to appear in Comptes Rendus Mathematique; minor errors corrected
free text keywords: General Mathematics, Mathematics - Dynamical Systems, Mathematics - Number Theory, 37C45 (Primary), 28A78, 37D35 (Secondary)

[1] T. Bedford. Crinkly curves, Markov partitions and box dimension in self-similar sets. Ph.D. Thesis, University of Warwick, 1984.

[2] P. Billingsley. Ergodic theory and information. Wiley, New York, 1965.

[3] K. Falconer. Techniques in fractal geometry. John Wiley & Sons, Chichester, 1997.

[4] A. Fan, L. Liao, J. Ma, Level sets of multiple ergodic averages, preprint.

[5] H. Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 1-49. [OpenAIRE]

[6] R. Kenyon, Y. Peres, B. Solomyak, Hausdorff dimension for fractals invariant under the multiplicative integers, preprint, 2011.

[7] C. McMullen. The Hausdorff dimension of general Sierpinski carpets. Nagoya Math. J. 96 (1984), 1-9. [OpenAIRE]

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue