publication . Preprint . 2010

Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases

Cates, M. E.; Henrich, O.; Marenduzzo, D.; Stratford, K.;
Open Access English
  • Published: 06 Sep 2010
Abstract
Lattice Boltzmann simulations have become a method of choice to solve the hydrodynamic equations of motion of a number of complex fluids. Here we review some recent applications of lattice Boltzmann to study the hydrodynamics of liquid crystalline materials. In particular, we focus on the study of (a) the exotic blue phases of cholesteric liquid crystals, and (b) active gels - a model system for actin plus myosin solutions or bacterial suspensions. In both cases lattice Boltzmann studies have proved useful to provide new insights into these complex materials.
Subjects
arxiv: Quantitative Biology::Subcellular ProcessesCondensed Matter::Soft Condensed Matter
free text keywords: Condensed Matter - Soft Condensed Matter
Funded by
RCUK| Large Scale Lattice-Boltzmann Simulation of Liquid Crystals
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: EP/E045316/1
  • Funding stream: EPSRC
,
RCUK| Edinburgh Soft Matter and Statistical Physics Programme Grant Renewal
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: EP/E030173/1
  • Funding stream: EPSRC
,
RCUK| TeraScale Shear Flow Challenge
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: EP/F054750/1
  • Funding stream: EPSRC
Download from
29 references, page 1 of 2

[7] M. E. Cates, S. M. Fielding, D. Maren- [22] L. H. Cisneros, R. Cortez, C. Dombrowski, duzzo, E. Orlandini and J. M. Yeomans, R. E. Goldstein, J. O. Kessler, Exp. Fluids Phys. Rev. Lett. 101, 068102 (2008). 43, 737 (2007).

[8] K. Stratford, R. Adhikari, I. Pagonabar- [23] D. Bray, Cell movements: from molecules raga, J.-C. Desplat and M. E. Cates, Sci- to motility, Garland Publishing, New York ence 309, 2198 (2005). (2000).

[9] A.N. Beris and B.J. Edwards, Thermody- [24] A. N. Morozov and W. van Saarloos, Phys. namics of Flowing Systems, Oxford Univer- Rev. Lett. 95, 024501 (2005). sity Press, Oxford, (1994).

[25] R. G. Larson, Nature 405, 27 (2000).

[10] D. C. Wright and N. D. Mermin, Rev. Mod. [26] K. Kruse, J. F. Joanny, F. Julicher, J. Phys. 61, 385 (1989). Prost and K. Sekimoto, Phys. Rev. Lett. 92, 078101 (2004).

[11] M. E. Cates, J. C. Desplat, P. Stansell, A. J. Wagner, K. Stratford, R. Adhikari and [27] T. B. Liverpool and M. C. Marchetti, EuI. Pagonabarraga, Phil. Trans. A 363, 1917 rophys. Lett. 69, 846 (2005). (2005).

[12] A. Tiribocchi, N. Stella, A. Lamura, G. Gonnella, arXiv:0902.3921.

[13] D. Marenduzzo, E. Orlandini, M. E. Cates and J. M. Yeomans, Phys. Rev. E 76, 031921 (2007).

[14] R. Faller, Phys. Chem. Chem. Phys. 11, 1867 (2009).

[15] Z. E. Hughes, L. M. Stimson, H. Slim, J. S. Lintuvuori, J. M. Ilnytskyi, and M. R. Wilson, Comp. Phys. Comm. 178, 724 (2008).

[16] R. Memmer, Liq. Cryst. 27, 533 (2000).

[28] R. A. Simha and S. Ramaswamy Phys. Rev. Lett. 89, 058101 (2002).

[29] T. Ishikawa and T. J. Pedley, Phys. Rev. Lett. 100, 088103 (2008).

[30] B. Chakrabarti, M. Das, C. Dasgupta, S. Ramaswamy and A. K. Sood, Phys. Rev. Lett. 92, 055501 (2004).

[31] S. Meiboom, J. P. Sethna, P. W. Anderson and W. F. Brinkman, Phys. Rev. Lett. 46, 1216 (1981).

29 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue